Hidden Multiple Comparisons Increase Forensic
Error Rates



In forensic evaluations, a single conclusion often relies on many compar-
isons, either implicitly or explicitly. Multiple comparisons arise persistently
when developing statistical methods to address scientific problems [Benjamini
and Hochberg, 1995], and greatly increase the probability of false discoveries.
Now that vast databases and efficient algorithms are routinely used in forensic
evaluations to propose matches to crime scene items, the problem of close non-
matches [President’s council of advisors on science and technology, 2016] due to
multiple comparisons becomes critically important. This often ignored issue in-
creases the false discovery rate, and can contribute to the erosion of public trust
in the justice system through conviction of innocent individuals. The multiple
comparison problem is not new: it has been raised in the past with regard to
DNA [Thompson et al., 2003] and latent print evaluations [Koehler and Liu,
2021]. One of the root causes [Fine, 2006] leading to the wrongful accusation
of Brandon Mayfield in the 2004 Madrid train bombing case was that the large
size of the TAFIS database used to search for similar prints made it possible to
locate ‘unusually’ close non-matches. As database size increases, so does the
probability of finding a close non-match.



Compounding this issue, the use of algorithms also results in a large num-
ber of comparisons that are not obvious to the user. For example, the cross-
correlation function [Vorburger et al., 2011], which computes the correlation
for each alignment of two sequences, was one of the first measures proposed
to quantify the similarity between two patterns in response to the 2009 NRC
report [NRC, 2009], and continues to be used in many pattern searching al-
gorithms to find the best alignment between two images and to quantify their
overall similarity. Finding the best alignment often consists in sliding one sur-
face across the whole length (for one-dimensional patterns, such as striations)
or area (for two dimensional sources, such as impression marks) of the other
item while keeping track of the value of a similarity measure. This mirrors
the forensic examination process: the examiner visually rotates and shifts items
under a comparison microscope to align two surfaces. In order to avoid false
accusations and the corresponding impact on public perception of forensics, we
must address the problem of multiple comparisons in database and alignment
searches and control their effect on false discovery rates.



Here, we consider the multiple comparisons problem that arises from a rel-
atively simple toolmark examination: matching a cut wire to a wire-cutting
tool. We describe the comparison approach, estimate the (minimal) number of
comparisons that are needed to carry out the examination, and discuss how the
false discovery rate changes with the number of comparisons involved, using
error rates derived from published black-box studies.



Examination Process



A forensics examiner tasked with determining whether a wire in evidence
was cut by a recovered tool will create one or more blade cuts, which are then
compared to the cut surface of the wire recovered from the scene. These cuts
are made in a sheet of material matching the wire composition, and may be
performed at multiple angles, as the angle of the tool to the substrate can affect
which striations are recorded on the substrate surface. The blade cuts will then
be compared to the wire under a comparison microscope, though eventually,
automatic comparison algorithms may also be validated for lab use. Each side
of each blade cut will be compared to each side of the wire; different tool designs
have between 2 and 4 cutting surfaces in contact with the substrate.



Methods: Calculating the Number of Compar-
isons



In order to calculate the number of comparisons carried out in the course of
one examination, we define b to be the length of the blade cut, and d to be the
diameter of the wire. We assume that the wire is covered with striations suitable
for comparison across its full diameter d. If this is not the case, we reduce the
value d. Both the blade and the wire are either digitally scanned at resolution r
mm per pixel, or visually examined using a microscope with a digital resolution
that can be expressed as r equivalent to the digital scan. An illustration of the
sliding comparison process is shown in Figure 1. Imagine that we move the cut
wire along the blade cut in order to assess whether striations on the blade cut
match the striations on the wire. We can move the wire unit-by-unit, or we can
move the wire by its full length, with no overlap to the previous comparison.



The first option gives us the maximum number of comparisons (b/r—d/r+1),
while the second option gives us the minimum number of comparisons b/d. In
the first case, sequential comparisons share much of the same physical data
and are highly related; in the second case, no data are shared between physical
comparisons and we can expect that they are statistically independent, though
empirically there will be nonzero correlations due to physical similarities be-
tween striations. For simplicity, let us consider the number of comparisons to
lie somewhere between these two estimates. Note that when b/d ~ 1, as in some
toolmark comparisons, the upper number of comparisons goes to 1. Finally, we
must consider the number of surfaces which must be compared: the wire may
have one or two sets of striae and there may be two to four blade cut surfaces
to examine, depending on the tool. This results in a multiplier of as much as 8.



A concrete example
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Figure 1: (Top) A comparison between a wire and a blade cut requires sliding
the wire along the entire blade cut length to determine the best match (or
whether there is a match). Surfaces shown are rendered 2D topographical scans
of a wire and blade cut taken with a confocal light microscope. (Bottom) RJ45
Crimp tool with a 1.5 cm razor blade used for cutting. 1 mm and 2 mm diameter
aluminum wires cut with the pliers are shown in a box in the top right corner.



Let us consider a wire-cutting tool with a 1.5 ¢m razor blade that meets a
cast surface (one such tool is shown in Figure 1); the wire is held against this
rectangular cast surface as the blade is pushed into the wire, splitting it in two.
This is a minimal scenario - the wire will acquire striations from one side of the
blade, while the blade itself has two cutting edges, which we will call side A and
side B. A blade cut of a sheet of aluminum will thus produce two striated edges
corresponding to side A and side B which are compared to cut wires to assess
similarity. We also have a 12 gauge aluminum wire (2 mm diameter) which may
have been cut by the wire-cutting tool described above. Class characteristics,
which are shared by all tools of similar manufacture, appear to match: there is a
flat impression on one side of the wire corresponding to the cast metal backstop
of the tool, and the wire is cut such that the blade and the backstop appear
to be perpendicular (that is, the wire appears to have been cut with a tool of
similar configuration). In this example, b = 15 mm, d = 2 mm, and there are at
least b/d = 7.5 comparisons between a wire cut and a blade cut. As there are
two blade cuts (side A and side B), the minimal number of comparisons is 15,
as these comparisons are non-overlapping and independent (on average).



Assuming a resolution of 0.645um per pixel, the maximum number of com-
parisons per blade cut is around 20, 000; thus, we need 40,000 comparisons in
order to find the optimal alignment between the wire and the blade cut. These
comparisons are implicit in the calculation of cross-correlation, which is the
first and often the only step used to quantitatively assess the similarity between
striated evidence such as bullets, aperture shear, and firing pin impressions.
Implicit comparisons are not unique to algorithms; an examiner would need
to physically align the wire and the blade cut by searching along the length
of the cut to visually match striations, performing the same process physically
that the algorithm performs computationally. While these sequential compar-
isons are highly auto correlated, and we cannot assume sequential independence
when calculating the probability of an error, they serve as an upper bound on the
number of comparisons which could be performed. As the number of compar-
isons increases, the probability of encountering a coincidental match increases.
Statisticians call this the family-wise error rate F; it is an important quantity
to control when conducting a series ("family”) of tests[Tukey, 1953].



Probability of False Discoveries



There are at least two components of the false discovery rate (FDR): iden-
tifying two pieces of evidence that have similar characteristics but are from
different sources (a coincidental match) and procedural failures (e.g. lab process
errors) [President’s council of advisors on science and technology, 2016, p 50].
In objective disciplines with standardized evaluation rules (e.g. DNA), these
sources can be distinguished. However, in toolmark examination, no objective
evaluation rules are used; examiners testify based on subjective rules for how
much similarity is sufficient for an identification.



Assuming that lab procedure errors are not a factor in studies, we use re-
ported error rates from three open-set studies of striated evidence[Bajic et al.,
2020, Mattijssen et al., 2021, Best and Gardner, 2022] to obtain a ballpark es-
timate of the coincidental match rate of a single wire-cut comparison. These
studies have FDRs between 0.0045 [Best and Gardner, 2022] and 0.072 [Mat-
tijssen et al., 2021]; pooling data from these studies weighted by sample size
yields an FDR of 0.02. For a single-comparison FDR of e, the family-wise FDR
for n comparisons, E,, is 1 — [1 — e]™. Table 1 shows the impact the number of
comparisons has on these published error rates. With an error rate of 0.007, as
suggested by Bajic (2020), examiners can make up to 14 comparisons, i.e. even
the simple example in this paper exceeds an upper bound of 10% for the family
wise false discovery error. To conduct a search of a modestly sized database
with 1000 entries, the initial FDR cannot exceed 1 in 10,000 to guarantee a
family-wise total false discovery error of at most 10%.



Under these constraints, the accuracy of an examination involving multiple
comparisons between a wire and a tool will be low, as the number of candidate
alignments that must be examined is high. Even the most innocuous example
(small blade, only 2 cutting surfaces, and a relatively large wire) involves a
minimum of 15 comparisons. Examiners would make cuts under multiple an-
gles [Baiker, 2015], increasing the number of comparisons and making a false
discovery even more probable. As a result, it is questionable whether wire com-
parisons made under current protocols are reliable enough to be presented at
trial.



Clearly, studies for wire evidence, and larger studies for striated evidence in
general, are necessary. Moving away from binary assessments toward quantifi-
cation of striation similarity and observed pattern frequency will also reduce the
severity of this issue and allow examiners to assign unusual striation patterns
more weight in the process.



False Discover-

ies (%) in N
comparisons

Study FDR e Eiyg FEio ELQOO Enx < 0.1
Mattijssen (2021) 7.24% 52.8 99.9 100.0 1
Pooled Error 2.00% 18.3 86.7  100.0 5
Bajic (2020) 0.70% 6.8 50.7 99.9 14
Best (2022) 0.45% 4.5 36.6 98.9 23
1 in 1,000 1.0 9.5 63.2 105
1 in 10,000 0.1 1.0 9.5 1,053
1in 100,000 10=% 0.1 1.0 10, 535

Table 1: Table showing the relationship between false discovery rates and the
chance of a false discovery in N comparisons for a set of different FDRs and
different number of comparisons. The last column gives the number of compar-
isons allowed while ensuring a familywise false discovery percentage of at most

10%.



Discussion & Conclusions



Forensic practitioners often report the findings from their examinations in
the form of a categorical conclusion reflecting a single decision. This is mislead-
ing when the decision relies on multiple comparisons which are not individually
presented in reports or testimony. In this short contribution, we have shown
that the implicit comparisons performed during forensic analysis of wire cuts
increase the family-wise error rate.



We describe a simple scenario where a wire is cut using a two-sided blade,
but findings apply to any situation where a forensic evaluation involves multiple
comparisons, including, e.g., database searches. Forensic practitioners should
understand how the number of comparisons can affect the accuracy of their final
conclusion. We propose three strategies to enhance transparency and enable
more reliable estimates of examination-specific error rates.



First, examiners should report (or defense attorneys should request) the
overall length or area of surfaces generated during the examination process,
along with the total consecutive length or area of the recovered evidence. These
pieces of information will take the place of b and d and facilitate calculation of
examination-wide error rates.



Second, researchers should conduct studies relating the length/area of com-
parison surface to the error rate. For instance, we have pooled studies looking at
bullet striations and firing pin shear marks because we could not find black-box
error rate studies of wire cuts. The striated surfaces are of orders of magnitude
different lengths, but represent the best estimate of the error rate for striated
materials. New studies should be designed to assess error rates (false discovery
and false elimination) when examiners are making difficult comparisons.



Finally, when databases are used at any stage of the forensic evidence eval-
uation process (from suitability assessment and triage to reports which will be
used at trial), the number of database items searched (or comparisons made)
and the number of results returned must be reported. Additionally, the number
of results used for further manual comparison should also be reported. For ex-
ample, if a firearms examiner searches a local NIBIN database with 1000 entries,
requests the 20 closest matches to her evidence, and then carries out a physical
examination of five exemplars from the list of 20, all of those values should be
clearly reported to enable estimation of the familywise error rate. This will help
make the multiple comparison issue accessible to everyone involved in evaluating
the value of forensic evidence: examiners, lawyers, jurors, and judges.
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