Data |

Read Tabular Data with readr

read_*(file, col_names = TRUE, col_types = NULL, col_select = NULL, id = NULL, locale, n_max = Inf,
skip =0, na=c("", "NA"), guess_max = min(1000, n_max), show_col_types = TRUE) See ?read_delim

ABIC AN 3 PR read_delim("file.txt", delim = "|") Read files with any delimiter. If no
1123 1 2 3 delimiter is specified, it will automatically guess.
4l5|NA 4 5 INA Tomakefile.txt, run: write_file("A|B|C\n1|2|3\n4|5|NA", file = "file.txt")
1B.C ; YR read_csv("file.csv") Read a comma delimited file with period
1’2’3 1 2 3 decimal marks.
- 4 5 NA write_file("A,B,C\n1,2,3\n4,5,NA", file = "file.csv")
4,5,NA
JERNIAN 3 VR read_csv2("file2.csv") Read semicolon delimited files with comma
1’5"2‘3 15 2 3 decimal marks.
e 45 5 NA write_file("A;B;C\n1,5;2;3\n4,5;5NA", file = "file2.csv")
4,5;5;NA
ABC 3 VR read_tsv("file.tsv") Read a tab delimited file. Also read_table().
. 1 2 3 read_fwf("file.tsv", fwf_widths(c(2, 2, NA))) Read a fixed width file.
5 NA 4 5 NA write_file("A\tB\tC\n1\t2\t3\n4\t5\tNA\n", file = "file.tsv")
L R
A B C Noheader EREIER skiplines
1 2 8 read_csv("file.csv', col_names = FALSE) 4 5 NA read_csv("file.csv", skip = 1)
4 5 NA
. PNEEIEE Read asubset of lines
ERFEEN Provide header B E read_csv("file.csv', n_max =1)
A B C read_csv("file.csv'
12 3 col_names=c("x","y","z")) EVNEEIE) Read values as missing
e NA 2 3 read_csv("file.csv", na=c("1"))
4 5 NA

Read multiple files into a single table
read_csv(c(“fl.csv”, “f2.csv”, “f3.csv"),
id ="origin_file")

Specify decimal marks
read_delim("file2.csv", locale =
locale(decimal_mark=")"))

mport with the tidyverse : : CHEATSHEET

One of the first steps of a project is to import
outside data into R. Data is often stored in
tabular formats, like csv files or spreadsheets.

The front page of this sheet shows
how to import and save text files into
R using readr.

The back page shows how to import
spreadsheet data from Excel files
using readxl or Google Sheets using
googlesheets4.

OTHER TYPES OF DATA

Try one of the following

packages to import other types of files:

« haven - SPSS, Stata, and SAS files
« DBI-databases

+ jsonlite - json

« xml2-XML

« httr- Web APIs

+ rvest- HTML (Web Scraping)

o readr:read_lines() - text data

A;B;C
1,5;2;3,0
Save Data with readr

write_*(x, file, na ="NA", append, col_names, quote, escape, eol, num_threads, progress)

write_delim(x, file, delim =" ") Write files with any delimiter.
CHOR — | asc | o o
T 123 write_csv(x, file) Write a comma delimited file.
4,5,NA write_csv2(x, file) Write a semicolon delimited file.

write_tsv(x, file) Write a tab delimited file.

== posit

Column Specification with readr

Column specifications define what data type each
column of a file will be imported as. By default
readr will generate a column spec when afile is
read and output a summary.

spec(x) Extract the full column specification for
the given imported data frame.
age

col_integer(), age isan
edu = col_character(), QL0
)

#
earn = col_double(
#

spec(x)
cols(

eduisa
character

COLUMN TYPES

Each column type has a function and
corresponding string abbreviation.

+ col_logical() - "l"

+ col_integer() - "i"

+ col_double() - "d"

+ col_number() - "n"

« col_character() - "c"

« col_factor(levels, ordered = FALSE) - "f"
+ col_datetime(format="")-"T"
- col_date(format="")-"D"

+ col_time(format="")-"t"

« col_skip()-"-","_"

- col_guess()-"?"

USEFUL COLUMN ARGUMENTS

Hide col spec message
read_"(file, show_col_types = FALSE)

Select columns to import
Use names, position, or selection helpers.
read_"(file, col_select = c(age, earn))

Guess column types

To guess a column type, read_ *() looks at the
first 1000 rows of data. Increase with guess_max.
read_"(file, guess_max = Inf)

DEFINE COLUMN SPECIFICATION

Set a default type
read_csv(

file,

col_type = list(.default = col_double())
)

Use column type or string abbreviation
read_csv(

file,

col_type = list(x = col_double(),y="1",z="_")
)

Use a single string of abbreviations
col types: skip, guess, integer, logical, character
read_csv(

file,

col_type="_7ilc"

)

CC BY SA Posit Software, PBC « info@posit.co « posit.co « readr.tidyverse.org - readxl.tidyverse.org - googlesheets4.tidyverse.org - HTML cheatsheets at pos.it/cheatsheets « readxl 1.4.5« googlesheets4 1.1.1« Updated: 2025-08

mailto:info@posit.co
http://posit.co
https://readr.tidyverse.org/
https://readxl.tidyverse.org/
https://googlesheets4.tidyverse.org/
https://pos.it/cheatsheets

Import Spreadsheets

with readxl

READ EXCEL FILES
il %2 53 4 55 x| x2 [x3 [x4 x5
X Z 8 q x NA z 8 NA
y 7 9 10 y 7 NA 9 10
si

read_excel(path, sheet = NULL, range = NULL)
Read a .xls or .xlsx file based on the file extension.
See front page for more read arguments. Also
read_xls() and read_xlsx().
read_excel("excel_file.xlsx")

READ SHEETS

read_excel(path, sheet =
NULL) Specify which sheet
to read by position or name.
read_excel(path, sheet = 1)
read_excel(path, sheet ="s1")

Bls2s3

excel_sheets(path) Get a
3 vector of sheet names.
excel_sheets("excel_file.xlsx")

s1 s2

To read multiple sheets:
1. Getavector of sheet
names from the file path.

2. Set the vector names to
be the sheet names.
Use purrr::map() and
purrr:list_rbind() to read
multiple files into one
path <- "your_file_path.xlsx" data frame.
path |>

excel_sheets() |»

set_names() |>

map(read_excel, path = path) |>

list_rbind()

s 3.
s1s2IEER

OTHER USEFUL EXCEL PACKAGES

For functions to write data to Excel files, see:
o openxlsx
e writexl

For working with non-tabular Excel data, see:
o tidyxl

== posit

READXL COLUMN SPECIFICATION

Column specifications define what data type
each column of a file will be imported as.

Use the col_types argument of read_excel() to
set the column specification.

Guess column types

To guess a column type, read_ excel() looks at
the first 1000 rows of data. Increase with the
guess_max argument.

read_excel(path, guess_max = Inf)

Set all columns to same type, e.g. character
read_excel(path, col_types = "text")

Set each column individually
read_excel(
path,
col_types = c("text", "guess”, "guess","numeric")

)

COLUMN TYPES
| logical [numeric| text | date | list |
TRUE 2 hello 1947-01-08 hello

FALSE 3.45 world 1956-10-21 1

+ skip + logical + date
+ guess « numeric o list
+ text

Use list for columns that include multiple data
types. See tidyr and purrr for list-column data.

with googlesheets4

READ SHEETS

il X2 53 5 56 x| x2 [x3[x4]x5|
X Z 8 q x NA z 8 NA
y 7 9 10 y 7 NA 9 10
st

read_sheet(ss, sheet = NULL, range = NULL)
Read a sheet from a URL, a Sheet ID, or a dribble
from the googledrive package. See front page for
more read arguments. Same as range_read().

SHEETS METADATA

URLs are in the form:
https://docs.google.com/spreadsheets/d/
SPREADSHEET_ID/edit#gid=SHEET_ID

gs4_get(ss) Get spreadsheet meta data.
gs4_find(...) Get data on all spreadsheet files.

sheet_properties(ss) Get a tibble of properties
for each worksheet. Also sheet_names().

WRITE SHEETS
write_sheet(data, ss =

1 x 4 > 1 x 4 NULL, sheet=NULL)
2y 5 2 Y 5 \Write adataframeintoa
. 8 2% Lew orexisting Sheet.
gs4_create(name, ...,
sheets = NULL) Create a
new Sheet with a vector
of names, a data frame,
or a (named) list of data
frames.
sheet_append(ss, data,
2y 5 > X11 XXZ)f sheet = 1) Add rows to
3 7 6 EI2§B the end of a worksheet.
Asz

CELL SPECIFICATION FOR READXL AND GOOGLESHEETS4

Use the range argument of readxl::read_excel() or
googlesheets4::read_sheet() to read a subset of cells from a

sheet.

1Eﬂﬂ5_) 2 3 4

read_excel(path, range = "Sheet1!B1:02")

x HFMA NA y 'z read_sheet(ss, range = "B1:D2")
67 910
s1 Also use the range argument with cell specification functions

cell_limits(), cell_rows(), cell_cols(), and anchored().

GOOGLESHEETS4 COLUMN SPECIFICATION

Column specifications define what data type
each column of a file will be imported as.

Use the col_types argument of read_sheet()/
range_read() to set the column specification.

Guess column types

To guess a column type read_sheet()/
range_read() looks at the first 1000 rows of data.
Increase with guess_max.

read_sheet(path, guess_max = Inf)

Set all columns to same type, e.g. character
read_sheet(path, col_types ="c")

Set each column individually
col types: skip, guess, integer, logical, character
read_sheets(ss, col_types ="_7ilc")

COLUMN TYPES
1 [n] c | D | L |
TRUE 2 hello 1947-01-08 hello

FALSE 3.45 world 1956-10-21 1

« skip-"_"or"-" + date-"D"

+ guess-"?7" + datetime-"T"

+ logical - "l" + character-"c"

+ integer-"i" + list-column - "L"
+ double-"d" + cell-"C" Returns

e numeric-"n list of raw cell data.

Use list for columns that include multiple data
types. See tidyr and purrr for list-column data.

FILE LEVEL OPERATIONS

googlesheets4 also offers ways to modify other
aspects of Sheets (e.g. freeze rows, set column
width, manage (work)sheets). Go to
googlesheets4.tidyverse.org to read more.

For whole-file operations (e.g. renaming, sharing,
placing within a folder), see the tidyverse
package googledrive at
googledrive.tidyverse.org.

CC BY SA Posit Software, PBC « info@posit.co « posit.co « readr.tidyverse.org - readxl.tidyverse.org - googlesheets4.tidyverse.org - HTML cheatsheets at pos.it/cheatsheets « readxl 1.4.5« googlesheets4 1.1.1« Updated: 2025-08

https://googlesheets4.tidyverse.org/
https://googledrive.tidyverse.org
mailto:info@posit.co
http://posit.co
https://readr.tidyverse.org/
https://readxl.tidyverse.org/
https://googlesheets4.tidyverse.org/
https://pos.it/cheatsheets

Data transformation with dplyr : : CHEATSHEET

dplyr functions work with pipes and expect tidy data. In tidy data:

pipes

Each variable is in
its own column

Each observation, or
case, is in its own row

x |>f(y)
becomes f(x,y)

Apply summary functions to columns to create a new table of
summary statistics. Summary functions take vectors as input and
return one value (see back).

summary function

Ny summarize(.data, ...)
Compute table of summaries.
mtcars [> summarize(avg = mean(mpg))

count(.data, ..., wt = NULL, sort = FALSE, name =
NULL) Count number of rows in each group defined
by the variables in ... Also tally(), add_count(),
add_tally().

mtcars [> count(cyl)

Use group_by(.data, ..., .add = FALSE, .drop = TRUE) to create a
"grouped" copy of a table grouped by columnsin ... dplyr
functions will manipulate each "group" separately and combine
the results.

B mtcars |>

group_by(cyl) |>
B summarize(avg=mean(mpg))

mtcars |>
summarize(
avg = mean(mpg), .by = cyl

Alternate grouping
syntax with .by as an
argument:)

Use rowwise(.data, ...) to group data into individual rows. dplyr
functions will compute results for each row. Also apply functions
to list-columns. See tidyr cheat sheet for list-column workflow.

B starwars|>
rowwise() [>
o mutate(film_count = length(films))

»> -

ungroup(x, ...) Returns ungrouped copy of table.
g_mtcars <- mtcars > group_by(cyl)
ungroup(g_mtcars)

== posit

EXTRACT CASES

Row functions return a subset of rows as a new table.

—>

filter(.data, ..., .preserve = FALSE) Extract rows
that meet logical criteria.
mtcars [> filter(mpg > 20)

distinct(.data, ..., .keep_all = FALSE) Remove
rows with duplicate values.
mtcars [> distinct(gear)

slice(.data, ..., .preserve = FALSE) Select rows
by position.
mtcars [> slice(10:15)

slice_sample(.data, ..., n, prop, weight_by =
NULL, replace = FALSE) Randomly select rows.
Use n to select a number of rows and prop to
select a fraction of rows.

mtcars [> slice_sample(n =5, replace = TRUE)

slice_min(.data, order_by, ..., n, prop,
with_ties = TRUE) and slice_max() Select rows
with the lowest and highest values.

mtcars [> slice_min(mpg, prop = 0.25)

slice_head(.data, ..., n, prop) and slice_tail()
Select the first or last rows.
mtcars |> slice_head(n =5)

Logical and boolean operators to use with filter()

<= is.na() %in% | xor()
>= lis.na() ! &

See ?base::Logic and 2Comparison for help.

ARRANGE CASES

_>

ADD CASES

-

arrange(.data, ..., .by_group = FALSE) Order
rows by values of a column or columns (low to
high), use with desc() to order from high to low.
mtcars |> arrange(mpg)

mtcars [> arrange(desc(mpg))

add_row(.data, ..., .before = NULL, .after = NULL)
Add one or more rows to a table.
cars [> add_row(speed = 1, dist = 1)

EXTRACT VARIABLES
Column functions return a set of columns as a new vector or table.

pull(.data, var=-1, name = NULL, ...) Extract
-»> column values as a vector, by name or index.
mtcars [> pull(wt)

> select(.data, ...) Extract columns as a table.
mtcars |> select(mpg, wt)

relocate(.data, ..., .before = NULL, .after = NULL)
—»> Move columns to new position.
mtcars |> relocate(mpg, cyl, .after = last_col())

Use these helpers with select() and across|()

e.g. mtcars > select(mpg:cyl)

contains(match) num_range(prefix, range) :,e.g., mpg:cyl
ends_with(match) all_of(x)/any_of(x, ..., vars) !, e.g., !gear

starts_with(match) matches(match) everything()
MANIPULATE MULTIPLE VARIABLES AT ONCE
df <-tibble(x_1=1¢c(1,2),x_2=c(3,4),y=c(4,5))
_, EEm across(.cols, .funs, ..., .names = NULL) Summarize

B or mutate multiple columns in the same way.
df |> summarize(across(everything(), mean))

] c_across(.cols) Compute across columns in
row-wise data.
df [»
rowwise() |>
mutate(x_total = sum(c_across(1:2)))

MAKE NEW VARIABLES

Apply vectorized functions to columns. Vectorized functions take
vectors as input and return vectors of the same length as output

(see back). . .
vectorized function

B mutate(.data, ..., .keep ="all", .before = NULL,
> .after = NULL) Compute new column(s). Also
add_column().
mtcars [> mutate(gpm =1/ mpg)
mtcars [> mutate(gpm = 1/ mpg, .keep = "none")

| rename(.data, ...) Rename columns. Use
> rename_with() to rename with a function.
mtcars [> rename(miles_per_gallon = mpg)

CC BY SA Posit Software, PBC « info@posit.co « posit.co « Learn more at dplyr.tidyverse.org « HTML cheatsheets at pos.it/cheatsheets « dplyr 1.1.4 « Updated: 2025-08

mailto:info@posit.co
http://posit.co
https://dplyr.tidyverse.org/
https://pos.it/cheatsheets

TO USE WITH MUTATE ()

mutate() applies vectorized functions to
columns to create new columns. Vectorized
functions take vectors as input and return
vectors of the same length as output.

vectorized function

OFFSET

lag() - offset elements by 1
lead() - offset elements by -1

CUMULATIVE AGGREGATE

cumall() - cumulative all()
cumany() - cumulative any()
cummax() - cumulative max()
cummean() - cumulative mean()
cummin() - cumulative min()
cumprod() - cumulative prod()
cumsum() - cumulative sum()

RANKING

cume_dist() - proportion of all values <=
dense_rank() - rank w ties = min, no gaps
min_rank() - rank with ties = min

ntile() - bins into n bins

percent_rank() - min_rank scaled to [0,1]
row_number() - rank with ties = "first"

MATH
+,-,% [, A %[%, %% - arithmetic ops
log(), log2(), log10() - logs
<, <=,>,>=, 1=, == - |ogical comparisons
between() - x >= left & x <=right
near() - safe == for floating point numbers

MISCELLANEOUS

case_when() - multi-case if_else()
starwars >
mutate(type = case_when(
height > 200 | mass > 200 ~ "large",
species == "Droid" ~ "robot",
TRUE ~"other")

coalesce() - first non-NA values by
element across a set of vectors
if_else() - element-wise if() + else()
na_if() - replace specific values with NA
pmax() - element-wise max()

pmin() - element-wise min()

== posit

TO USE WITH SUMMARIZE ()

summarize() applies summary functions to
columns to create a new table. Summary
functions take vectors as input and return single
values as output.

summary function

COUNT

n() - number of values/rows
n_distinct() - # of uniques
sum(lis.na()) - # of non-NAs

POSITION
mean() - mean, also mean(lis.na())
median() - median

LOGICAL
mean() - proportion of TRUEs
sum() - # of TRUEs

ORDER

first() - first value
last() - last value
nth() - value in nth location of vector

RANK

quantile() - nth quantile
min() - minimum value
max() - maximum value

SPREAD

IQR() - Inter-Quartile Range

mad() - median absolute deviation
sd() - standard deviation

var() - variance

Tidy data does not use rownames, which store a
variable outside of the columns. To work with the
rownames, first move them into a column.

rownames_to_column()

[A]B] A]B] .
at _1at Moverownamesinto col.
_>

bu ~2bu a<-mtcars|>

eV BNV rownames_to_column(var="C")
(A]B) nA column_to_rownames()
g > 2 Move colinto row names.

3¢y 3¢ al>column_to_rownames(var="C")
Also has_rownames() and

remove_rownames().

COMBINE VARIABLES

X y
alB]c]
at1l
b
c

no‘ma
wn -

o T o

8]
t
u
v

= NWw
=N W

at t
u 2 b u u
v 3 dw w
bind_cols(..., .name_repair) Returns tables
placed side by side as a single table. Column
lengths must be equal. Columns will NOT be
matched by id (to do that look at Relational Data
below), so be sure to check that both tables are
ordered the way you want before binding.

RELATIONAL DATA

Use a "Mutating Join" to join one table to
columns from another, matching values with the
rows that they correspond to. Each join retains a
different combination of values from the tables.

nEEn left_join(x, y, by = NULL, copy = FALSE,

— ; z suffix =c(".x",".y"), ..., keep = FALSE,

< v 3w ha_matches="na") Join matching
values fromy to x.

[right_join(x, y, by = NULL, copy = FALSE,

— ; z suffix =c(".x",".y"), ..., keep = FALSE,

dwna1 Na_matches="na") Join matching
values from x toy.

AEED inner_join(x, y, by = NULL, copy = FALSE,

e o 55 suffix=c("x","y"),..., keep = FALSE,
na_matches ="na") Join data. Retain
only rows with matches.

BEEC full_join(x, y, by = NULL, copy = FALSE,

e 055 suffix=c("x""y"),..., keep =FALSE,

< v 3w ha_matches="na") Join data. Retain all

dwni1 values, all rows.

COLUMN MATCHING FOR JOINS

Use by =c("coll", "col2",...) to
specify one or more common
columns to match on.

left_join(x, y, by ="A")

AXB.x C] Use a named vector, by =¢("col1" =
= L2 5w "col2"), to match on columns that
cv3a have different names in each table.

left_join(x, y, by =c("C"="D"))

mmaA Use suffix to specify the suffix to
1 g give to unmatched columns that
< v 32 ¢ havethesamenamein both tables.

left_join(x, y, by =c("C"="D"),
suffix=c("1","2")

COMBINE CASES

alB|C]
atl
X bu2
y @wa bind_rows(...,.id=NULL)

Returns tables one on top of the
other as a single table. Set .id to
a column name to add a column
of the original table names (as
pictured).

<<><><E
anoco
SR |
-thn—nn

Use a "Filtering Join" to filter one table against
the rows of another.

X y
(AlB|c|

at1l at 3
b u 2 b u 2
cv 3 dw 1

AEE semi_join(x, y, by = NULL, copy = FALSE,

s &2 ..., na_matches="na") Return rows of
that have a matchiny. Use to see what
will be included in a join.

AEE anti_join(x, y, by = NULL, copy = FALSE,

cvi3 .., na_matches="na") Return rows of x
that do not have a match iny. Use to see
what will not be included in a join.

Use a "Nest Join" to inner join one table to
another into a nested data frame.

alB]C]

a t 1 <tibble[1x2]>
b u 2 <tibble[1x2]>
c v 3 <tibble[1x2]>

nest_join(x, y, by = NULL, copy =
FALSE, keep = FALSE, name =
NULL, ...) Join data, nesting
matches fromyin a single new
data frame column.

SET OPERATIONS

NEE intersect(x,y,...)
¢Vv3 Rowsthat appearinbothxandy.

setdiff(x, y, ...)
Rows that appear in x but not y.

oo 4
Cz—rm
NI |

union(x,y, ...)

Rows that appearinxory,
duplicates removed). union_all()
retains duplicates.

ao oo d
E<c;—rm
-bwwl—-m

Use setequal() to test whether two data sets
contain the exact same rows (in any order).

CC BY SA Posit Software, PBC « info@posit.co « posit.co « Learn more at dplyr.tidyverse.org « HTML cheatsheets at pos.it/cheatsheets « dplyr 1.1.4 « Updated: 2025-08

mailto:info@posit.co
http://posit.co
https://dplyr.tidyverse.org/
https://pos.it/cheatsheets

String manipulation with stringr : : CHEATSHEET

The stringr package provides a set of internally consistent tools for working with character strings, i.e. sequences of characters surrounded by quotation marks.

N

Detect Matches

Subset Strings

Manage Lengths

stringr

TRUE str_detect(string, pattern, negate = FALSE) str_sub(string, start = 1L, end =-1L) Extract 4 str_length(string) The width of strings (i.e.
- Detect the presence of a pattern matchin a - substrings from a character vector. - ° number of code points, which generally equals
TRUE string. Also str_like(). str_detect(fruit, "a") str_sub(fruit, 1, 3); str_sub(fruit, -2) 3 the number of characters). str_length(fruit)
TRUE str_starts(string, pattern, negate = FALSE) str_subset(string, pattern, negate = FALSE) str_pad(string, width, side = c("left", "right",
- Detect the presence of a pattern match at > Return only the strings that contain a pattern - "both"), pad =" ") Pad strings to constant
TRUE the beginning of a string. Also str_ends(). match. str_subset(fruit, "p") width. str_pad(fruit, 17)
str_starts(fruit, "a")
str_extract(string, pattern) Return the first str_trunc(string, width, side = c("right", "left",
1 str_which(string, pattern, negate = FALSE) 1~ NA pattern match found in each string, as a vector. - "center"), ellipsis = "...") Truncate the width
- 2 Find the indexes of strings that contain] Also str_extract_all() to return every pattern of strings, replacing content with ellipsis.
a pattern match. str_which(fruit, "a") match. str_extract(fruit, "[aeiou]") str_trunc(sentences, 6)
24 str_locate(string, pattern) Locate the i [| str_match(string, pattern) Return the str_trim(string, side = c("both", "left", "right"))
-»> o positions of pattern matches in a string. n ->NAEA first pattern match found in each string, as - Trim whitespace from the start and/or end of
s 4 Also str_locate_all(). str_locate(fruit, "a") B ™ a matrix with a column for each () group in a string. str_trim(str_pad(fruit, 17))
pattern. Also str_match_all().
0 str_count(string, pattern) Count the number str_match(sentences, "(a|the) ([" +])") str_squish(string) Trim whitespace from each
- 3 of matches in a string. str_count(fruit, "a") end and collapse multiple spaces into single
) spaces. str_squish(str_pad(fruit, 17, "both"))
Mutate Strings Join and Split Order Strings
| str_sub() <- value. Replace substrings by | i str_c(...,sep="", collapse = NULL) Join 4 str_order(x, decreasing = FALSE, na_last =
> = identifying the substrings with str_sub() and = -»> = multiple strings into a single string. = - TRUE, locale = "en", numeric = FALSE, ...)!
i assigning into the results. B u str_c(letters, LETTERS) 2 Return the vector of indexes that sorts a
str_sub(fruit, 1, 3) <- "str" character vector. fruit[str_order(fruit)]
str_flatten(string, collapse ="") Combines
|| str_replace(string, pattern, replacement) m~ Bl into asingle string, separated by collapse. str_sort(x, decreasing = FALSE, na_last =
5 Replace the first matched pattern in each O str_flatten(fruit, ", ") = > o TRUE, locale ="en", numeric = FALSE, ...)!
n string. Also str_remove(). - Sort a character vector. str_sort(fruit)
str_replace(fruit, "p", "-") str_dup(string, times) Repeat strings times
- times. Also str_unique() to remove duplicates.
[| str_replace_all(string, pattern, replacement) str_dup(fruit, times = 2) H e l ers
Sl 1 Replace all matched patterns in each string. p
i Also str_remove_all(). str_split_fixed(string, pattern, n) Splita str_conv(string, encoding) Override the
str_replace_all(fruit, "p", "-") vector of strings into a matrix of substrings encoding of a string. str_conv(fruit,'ISO-8859-1")
(splitting at occurrences of a pattern match).
ASTRING str_to_lower(string, locale ="en")! > Also str_split() to return a list of substrings appl str_view(string, pattern, match = NA)
astring Convert strings to lower case. and str_split_i() to return the ith substring. banana View HTML rendering of all regex matches.
str_to_lower(sentences) str_split_fixed(sentences, " ", n=3) pee-ar str_view(sentences, "[aeiou]")
astring str_to_upper(string, locale ="en")! o fyyd str_glue(..., .sep="", .envir = parent.frame()) str_equal(x, y, locale = "en", ignore_case =
ASTRING Convert strings to upper case. v Create a string from strings and {expressions} :EUE FALSE, ...)! Determine if two strings are
str_to_upper(sentences) to evaluate. str_glue("Piis {pi}") iy equivalent. str_equal(c("a", "b"), c("a", "c"))
TRUE
astring str_to_title(string, locale ="en")! Convert str_glue_data(.x, ..., .sep="", .envir= str_wrap(string, width = 80, indent =0,
A String strings to title case. Also str_to_sentence(). = - parent.frame(), .na="NA") Use a data frame, Thisisalongsentence. exdent = 0) Wrap strings into nicely formatted
str_to_title(sentences) [B list, or environment to create a string from . paragraphs_ SU;V\/I’&]D(SGI’V[@HCGS, 20)
E” N strings and {expressions} to evaluate. Igr'ft;i;"”g
[|])

== posit

str_glue_data(mtcars, "{rownames(mtcars)} has
{hp}hp')

1 See bit.ly/IS0639-1 for a complete list of locales.

CC BY SA Posit Software, PBC « info@posit.co « posit.co « Learn more at stringr.tidyverse.org « Diagrams from @LVaudor on Twitter « HTML cheatsheets at pos.it/cheatsheets « stringr 1.5.1 « Updated: 2025-08

http://bit.ly/ISO639-1
mailto:info@posit.co
http://posit.co
http://stringr.tidyverse.org/
https://twitter.com/LVaudor
https://pos.it/cheatsheets

1 _ Regular expressions, or regexps, are a concise language for . .
Need tO Kn OW Regu lal’ EXpreSS|OnS describing patterns in strings. ‘_[ISPacel_] N
.. new line LY\
Pattern arguments in stringr are interpreted as MATCH CHARACTERS see <- function(rx) str_view("abc ABC 123\t.!?\\(){}\n", rx) =
regular expressions after any special characters [:blank:] stri ng I
have been parsed. string regexp matches example
(type this) (to mean this) (which matches this) Space oo
In R, you write regular expressions as strings, a (etc.) a (etc.) see("a") abc ABC 123 .I2\(){} tab
sequences of characters surrounded by quotes \\ \.) see("\\") abc ABC 123 .I2\(){}
) OPIIE R GUIEES) W \! ! see("\\!") abc ABC 123 .12\({} [:graph:]
Some characters cannot be represented directly \\? \? ? see("\\?") abc ABC 123 .I2\(){}
in an R string . These must be represented as \\\\ \\ \ see("\\\\") abcABC 123 '2\(){} [:punct:] [:symbol:]
special characters, sequences of characters that \\(\((see("\(") abc ABC 123 1\(){}
have a specific meaning., e.g.) \) see("\\)") abc ABC 123 12\(){} 1 2/ T@# =+ A
Special Character ~ Represents \\{ \{ { see("\\{") abc ABC 123 .I2\(){} 11110ttt L
\\ \ \\} \} } see("\}") abc ABC 123 .I2\(){}
\" " \\n \n new line (return) see("\\n") abc ABC 123 I\(){} [:alnum:]
\n new line \\t \t tab see("\\t") abc ABC 123 .I2\(){}
Run 2""" to see a complete list \\s \s any whitespace (\S for non-whitespaces) see("\\s") abcABC 123 .17\(){} [:digit:]
\\d \d any digit (\D for non-digits) see("\\d") abc ABC 123 .I\(){} 0123456789
Because of this, whenever a \ appears in a regular \\w \w any word character (\W for non-word chars) see("\\w") abc ABC 123 .I?7\(){}
expression, you must write it as \\ in the string \\b \b word boundaries see("\\b") abc ABC 123 .I\(){}
that represents the regular expression. [:digit:] digits see("[:digit:]") abc ABC 123 12\(){} [:alpha:]
Use writeLines() to see how R views your string [:alpha:] letters see("l:alpha:]”) abcABC 123 .I7\(){} [:lower:] [:upper:]
after all special characters have been parsed. [:lower:] lowercase letters see("[:lower:]") abc ABC 123 .I2\(){}
o . [:upper:] uppercase letters see("[:upper:]") abcABC123 .I\(){} abcdef ABCDEF
writeLines("\\.") . . nr. 19 -
#\. [:alnum:] letters and numbers see("[:alnum:] abc ABC 123 .'\(){} ghijk.l GHI JKL
o) [:punct:] punctuation see("[:punct:]" abc ABC 123 I\(){}
,';‘V’\"tel-”;esg("“l'sﬁ backslash") [:graph:] letters, numbers, and punctuation see("[:graph:]" abc ABC 123 .I\(){} AUEEOE HNESSE
Is a backsias [:space:] space characters (i.e. \s) see("[:space:]" abc ABC 123 .I2\(){} stuvwx STUVWX
[:blank:] space and tab (but not new line) see("[:blank:]" abc ABC 123 .I\(){} y z Y 7
--- every character except a new line see("") abc ABC 123 .I2\()}
INTERPRETATION) : , . ..
Many base R functions require classes to be wrapped in a second set of [], e.g. [[:digit:]]
Patterns in stringr are interpreted as regexs. To
change this default, Wrap the Pattern in ONE Of: e e
' - ALTERNATES alt <- function(rx) str_view("abcde", rx) QUANTIFIERS quant <- function(rx) str_view(".a.aa.aaa", rx)
R e e = |
Modifies aregex to ignore cases, match end of ab|d or alt("abl|d") abcde . a? Zero or one quant("a?") .a.aa.aaa
l|r)teﬁ_as well'of entilof s;crl?]gs, allothhcommct?chs [abe] one of alt("[abe]") abcde } : o 7610 OF More quant("a*") LB
mlcldgi;zg\e:s, and/orto have . match everything [*abe] anything but alt("[*abe]") abcde .. ot one or more quant("a+") .a.aa.aaa
str_detect("l", regex("i", TRUE)) [a-c] range alt("[a-c]") abcde . ain} exactly n quant("a{2}") .a.2a.aaa
] A 5 5 ' S, a{n, } n or more quant("a{2,}") .a.aa.aaa
ixed() Mat t t wi R o) 2 2 1= " "
clf)m(aera(c?terz tchaetsc?r\:vbeyrggrel;e\rlmvtledrri‘rllsﬁwstﬁ'?pﬁe ANCHORS anchor < function(r) str view(*aaa™ rx) HoHmE © afn,m} betweennandm quant("a{2,4}") .a.aa.aaa
ways (fast). str_detect("\u0130", fixed("i")) regexp matches example
coll() Matches raw bytes and will use locale D— Aa start of stl_’ing anchor(""a") aaa GROUPS ref <- function(rx) str_view("abbaab", rx)
specific collation rules to recognize characters ; as end of string anchor("as") aaa Use parentheses to set precedent (order of evaluation) and create groups
that can be represented in multiple ways (slow). tch |
str_detect("\u0130", coll("i", TRUE, locale = "tr")) regexp matenes exampre
R R R CEEEECECEEEEEEEEE AEREEE ' U '.' (abld)e Setsprecedence alt("(ab|d)e") adee
. look <- function(rx) str_view("bacad", rx)
boundary() Matches boundaries between)
characters, line_breaks, sentences, or words. regexp matches example Use an escaped number to refer to and duplicate parentheses groups that occur
str_split(sentences, boundary("word")) a(2=0) followed by look("a(?=c)") bacad earlier in a pattern. Refer to each group by its order of appearance
a(?!c) not followed by look("a(?!c)") bacad string regexp matches example
(?<=b)a preceded by look("(?<=b)a") bacad (type this) (to mean this) (which matches this) (the result is the same as ref("abba"))
(2<Ib)a not preceded by look("(?<!b)a") bacad \\1 \1 (etc.) first () group, etc. ref("(a)(b)\\2\\1") abbaab

CC BY SA Posit Software, PBC «

== posit

info@posit.co » posit.co « Learn more at stringr.tidyverse.org - Diagrams from @LVaudor on Twitter « HTML cheatsheets at pos.it/cheatsheets « stringr 1.5.1 « Updated: 2025-08

mailto:info@posit.co
http://posit.co
http://stringr.tidyverse.org/
https://twitter.com/LVaudor
https://pos.it/cheatsheets

Data tidying with tidyr : : CHEATSHEET

Tidy data is a way to organize tabular datain a
consistent data structure across packages.
Atableis tidy if:

-

Each variable isin
its own column

Each observation, or
case, is in its own row

AlB[c] Al BRd C]
Access variables Preserve cases in
as vectors vectorized operations

Tibbles

AN ENHANCED DATA FRAME

Tibbles are a table format provided
by the tibble package. They inherit the
data frame class, but have improved behaviors:

« Subset a new tibble with], a vector with [[and §.
+ No partial matching when subsetting columns.

ReS h d pe D ata - Pivot data to reorganize values into a new layout.

A

O0O00WWWwW™> > >

A

B
C

07K 2K A 0.7K
37K | 80K B 37K
212K 213K C 212K
A EI 2k
B [EI 8ok
c EIM 213K
| year | type [count] | pop
1999 07K 5 A 1999 07K 19M
AECEN pop IRELY A 2000 2K | 20M
2000 2K B 1999 37K [172M
2000 [T 2om B 2000 80K [174M
1999 37K C 1999 212K | 1T
1999 IFETH 172m C 2000 213K | 1T
2000 80K
2000 IFYTH 174m
1999 212K
ECEN pop RS
2000 213K
2000 Pl 1T

pivot_longer(data, cols, names_to = "name",
values_to = "value", values_drop_na = FALSE)

"Lengthen" data by collapsing several columns
into two. Column names move to a new
names_to column and values to a new values_to
column.

pivot_longer(table4a, cols =2:3, names_to ="year",
values_to = "cases")

pivot_wider(data, names_from ="name",
values_from = "value")

The inverse of pivot_longer(). "Widen" data by
expanding two columns into several. One column
provides the new column names, the other the
values.

pivot_wider(table2, names_from = type,
values_from = count)

» Display concise views of the data on one screen. S p l |t Ce l IS - Use these functions to split or combine cells into individual, isolated values.

options(tibble.print_max =n, tibble.print_min=m,

tibble.width = Inf) Control default display settings.

View() or glimpse() View the entire data set.

CONSTRUCT ATIBBLE
tibble(...) Construct by columns.

tibble(x=1:3,y=c("a","b", "c")) Both make
. this tibble
tribble(...) Construct by rows. =
tribble(~x, ~y,
n_n A tlbble: 3 X 2
1,"a, X y
7 "k . <int> <chrg
" n 2 2 b
3,'c’) 3 3 c

as_tibble(x, ...) Convert a data frame to a tibble.

enframe(x, name = "name", value = "value")

Convert a named vector to a tibble. Also deframe().

is_tibble(x) Test whether x is a tibble.

== posit

A 19 A 19
A 20 - A 20
B 19 B 19
B 20 B 20
country | year | rate | [pop |
A 1999 0.7K/ A 1999 0.7K
A 2000 2K/ A 2000 2K
B 1999 37K/ B 1999 37K
B 2000 80K/ B 2000 80K
[country | year | rate |
A 1999 0.7K
country| year | rate | A 1999
A 1999 0.7K/ A 2000 2K
A 2000 2K/ —» A 2000
B 1999 37K/ B 1999 37K
B 2000 80K/ B 1999
B 2000 80K
B 2000

CC BY SA Posit Software, PBC «

info@posit.co «

unite(data, col, ..., sep="_", remove = TRUE,
na.rm = FALSE) Collapse cells across several
columns into a single column.

unite(table5, century, year, col = "year" sep ="")

separate_wider_delim(data, cols, delim, ...,
names = NULL, names_sep = NULL, names_repair =
"check unique", too_few, too_many, cols_remove =
TRUE) Separate each cell in a column into several
columns. Also separate_wider_regex() and
separate_wider_position().

separate(table3, rate, sep ="/",
into = c("cases", "pop"))

separate_longer_delim(data, cols, delim, ..,
width, keep_eampty) Separate each cellin a
column into several rows.

separate_longer_delim(table3, rate, sep="/")

Expand
Tables

Create new combinations of variables or identify
implicit missing values (combinations of
variables not present in the data).

21 IE expand(data, ...) Create a
o >0
3 B
B

new tibble with all possible
combinations of the values
of the variables listed in ...
Drop other variables.
expand(mtcars, cyl, gear,

T W >
—_
N =N

carb)
SE: ? I/E}!:ﬂl!fl complete(data, ..., fill =
B 1 4 > a 2 . list()) Add missing possible
SRS >, 5 combinations of values of

variables listed in ... Fill
remaining variables with NA.
complete(mtcars, cyl, gear,
carb)

Handle Missing Values

Drop or replace explicit missing values (NA).

[x1 [x2 | EXNEA drop_na(data, ...) Drop
A 1 » A 1 ..).
B D 3 rows containing NA’sin ...
C
— columns.
E drop_nal(x, x2)

I!f\ll!? I:':l!!? fill(data, ..., .direction =
B = d "down") Fillin NA’sin ...
C c 1 H
— —= columns using the next or
E E 3 previous value.

fill(x, x2)

[x1 [x2 | EXEA replace_na(data, replace)
A 1 » A 1 .
B B 2 Specify a value to replace
o © 2 NAinselected columns.
E E 2 replace_nal(x, list(x2 = 2))

posit.co « Learn more at tidyr.tidyverse.org « HTML cheatsheets at pos.it/cheatsheets « tidyr 1.3.1 « tibble 3.3.0 « Updated: 2025-08

mailto:info@posit.co
http://posit.co
http://tidyr.tidyverse.org
https://pos.it/cheatsheets

Nested Data

A nested data frame stores individual tables as a list-column of data frames within a larger organizing data frame. List-columns can also be lists of vectors or lists of varying data types.

Use a nested data frame to:

« Preserve relationships between observations and subsets of data. Preserve the type of the variables being nested (factors and datetimes aren't coerced to character).

« Manipulate many sub-tables at once with purrr functions like map(), map2(), or pmap() or with dplyr rowwise() grouping.

CREATE NESTED DATA

nest(data, ...) Moves groups of cells into a list-column of a data
frame. Use alone or with dplyr::group_by():

1. Group the data frame with group_by() and use nest() to move
the groups into a list-column.
n_storms <- storms |>
group_by(name) |~
nest()

2. Use nest(new_col = c¢(x, y)) to specify the columns to group
using dplyr::select() syntax.
n_storms <- storms |>
nest(data = c(year:long))

"cell" contents
1975 27.5 -79.0
1975 28.5 -79.0
1975 29.5 -79.0

[yr_| lat | long |

[name | yr [tat [tong [l name| yr | tat | tong |
Amy 1975 27.5 -79.0 Amy 1975 27.5 -79.0
Amy 1975 28.5 -79.0 Amy 1975 285 -79.0
Amy 1975 29.5 -79.0 Amy 1975 29.5 -79.0

nested data frame

Bob 1979 22.0 -96.0 > Bob 1979 22.0 -96.0 Amy <tibble [50x3]> 1979 22.0 -96.0
Bob 1979 22.5 -95.3 Bob 1979 225 -95.3 Bob <tibble [50x3]> 1979 225 -95.3
Bob 1979 23.0 -94.6 Bob 1979 23.0 -94.6 Zeta <tibble [50x3]> 1979 23.0 -94.6

Zeta 2005 23.9 -35.6 Zeta 2005 23.9 -35.6
Zeta 2005 24.2 -36.1 Zeta 2005 24.2 -36.1
Zeta 2005 24.7 -36.6 Zeta 2005 24.7 -36.6

[yr [tat [long |
2005 23.9 -35.6
2005 24.2 -36.1
Index list-columns with [[]]. n_stormsSdata[[1]] w008 68

CREATE TIBBLES WITH LIST-COLUMNS

tibble::tribble(...) Makes list-columns when needed.
tribble(~max, ~seq,

3’ 123’ 3 <int [3]>
4, 14, 4 <int[4l>
5) 125) 5 <int[5]>

tibble::tibble(...) Saves list input as list-columns.
tibble(max=c(3,4,5), seq = list(1:3, 1:4, 1.5))
tibble::enframe(x, name="name", value="value")

Converts multi-level list to a tibble with list-cols.
enframel(list('3'=1:3, '4'=1:4, '5'=1:5), 'max, 'seq’)

OUTPUT LIST-COLUMNS FROM OTHER FUNCTIONS

dplyr::mutate(), transmute(), and summarise() will output
list-columns if they return a list.
mtcars [>

group_by(cyl) [>

summarise(q = list(quantile(mpg)))

== posit

RESHAPE NESTED DATA

unnest(data, cols, ..., keep_empty = FALSE) Flatten nested columns
back to regular columns. The inverse of nest().
n_storms |> unnest(data)

unnest_longer(data, col, values_to = NULL, indices_to = NULL)
Turn each element of a list-column into a row.

starwars >
select(name, films) |»
unnest_longer(films)

[__name [films |
Luke The Empire Strik...
Luke Revenge of the S...
| name | films | Luke Return of the Jed...
Luke <chr [5]> C-3PO The Empire Strik...
C-3PO <chr [6]> C-3PO Attack of the Cl...
R2-D2 <chr[7]> C-3PO The Phantom M...
R2-D2 The Empire Strik...
R2-D2 Attack of the Cl...
R2-D2 The Phantom M...

unnest_wider(data, col) Turn each element of a list-column into a
regular column.

starwars >
select(name, films) |>
unnest_wider(films, names_sep = “_")
|_name | films | |_name [films.1 [films.2 [films 3 |
Luke <chr [5]> Luke The Empire... Revengeof.. Returnof...
C-3PO <chr [6]> C-3PO The Empire... Attackof... The Phantom...
R2-D2 <chr[7]> R2-D2 The Empire... Attackof... The Phantom...

hoist(.data, .col, ..., .remove = TRUE) Selectively pull list components
out into their own top-level columns. Uses purrr::pluck() syntax for
selecting from lists.

starwars >
select(name, films) |>
hoist(films, first_film = 1, second_film =2)

[_name [films | [_name [first_film | second_film [films |
Luke <chr [5]> Luke The Empire... Revenge of... <chr [3]>
C-3PO <chr [6]> C-3PO The Empire... Attackof... <chr [4]>
R2-D2 <chr[7]> R2-D2 The Empire... Attack of... <chr [5]>

CC BY SA Posit Software, PBC « info@posit.co « posit.co « Learn more at tidyr.tidyverse.org -

TRANSFORM NESTED DATA

A vectorized function takes a vector, transforms each element in
parallel, and returns a vector of the same length. By themselves
vectorized functions cannot work with lists, such as list-columns.

dplyr::rowwise(.data, ...) Group data so that each row is one
group, and within the groups, elements of list-columns appear
directly (accessed with [[), not as lists of length one. When you
use rowwise(), dplyr functions will seem to apply functions to
list-columns in a vectorized fashion.

[data [data | fu n(“) | result |
<tibble [50x4]> * <tibble [50x4]> * <tibble [50x4]> **°* * result 1
<tibble [50x4]> <tibble [50x41> (<tibble [50x4]> - -) result 2
<tibble [50x4]> <tibble [50x4]> fu n(<tibble [50x4]> ...) result 3

Apply a function to a list-column and create a new list-column.

dim() returns two
n_storms \> values per row
rowwise() [>

=i i th list to tell mutat
mutate(n = list(dim(data))) wr:gg:aatelali:t-goltrrr::nae

Apply a function to a list-column and create a regular column.

n_storms|>
rowwise() [>
mutate(n = nrow(data)) “’i‘,’,‘{‘ﬁégff,“eﬂ“fo“’ﬂ',"e

Collapse multiple list-columns into a single list-column.

starwars |
rowwise() [>
mutate(transport = list(append(vehicles, starships)))

append() returns a list for each
row, so col type must be list

Apply a function to multiple list-columns.

> length() returns one
starwa r,S | iﬁteger per row
rowwise() [>

mutate(n_transports = length(c(vehicles, starships)))

See purrr package for more list functions.

HTML cheatsheets at pos.it/cheatsheets . tidyr 1.3.1 . tibble 3.3.0 « Updated: 2025-08

mailto:info@posit.co
http://posit.co
http://tidyr.tidyverse.org
https://pos.it/cheatsheets

Data visualization with ggplot2 : : CHEATSHEET

Basics

ggplot2 is based on the grammar of graphics, the idea
that you can build every graph from the same
components: a data set, a coordinate system,

and geoms—visual marks that represent data points.

——-3e []
—>e []
——>e []

data geom

coordinate plot
X=F-y=A

system

To display values, map variables in the data to visual
properties of the geom (aesthetics) like size, color, and x
andy locations.

(Flm|Al

——— 4

e ——

=i (]

—_

—3

E——

data geom
Xx=F-y=A
color=F
size=A

coordinate plot
system

Complete the template below to build a graph.
ggplot (data =) + -Irequ'red

<GEOM_FUNCTION> (UET:J LTk I-1{ <MAPPINGS> R
stat =1, position =Ge ko] B) + Not

required,
<COORDINATE_FUNCTION> A4 sensible
<FACET_FUNCTION> k& defaults
supplied

<SCALE_FUNCTION> ks

<THEME_FUNCTION>

ggplot(data = mpg, aes(x = cty, y = hwy)) Begins a plot
that you finish by adding layers to. Add one geom
function per layer.

last_plot() Returns the last plot.
ggsave("plot.png", width =5, height = 5) Saves last plot

as 5’ x 5’ file named "plot.png" in working directory.
Matches file type to file extension.

AeS Common aesthetic values.
color and fill - string ("red", "#RRGGBB")

linetype - integer or string (0 = "blank", 1 = "solid",
2 ="dashed", 3 ="dotted", 4 = "dotdash", 5 = "longdash",
6 ="twodash")

size - integer (in mm for size of points and text)

linewidth - integer (in mm for widths of lines)

. 0123456789101 12
shape - integer/shape nameor oA+ xOURKkS e TE
asingle character ("a") 1314151617 181920 21 22 232425
RNOO0ASO 0 0 mOAY

== posit

Geoms

GRAPHICAL PRIMITIVES

a <- ggplot(economics, aes(date, unemploy))
b <- ggplot(seals, aes(x = long, y = lat))

Each function returns a layer.

a +geom_blank() and a + expand_limits()
Ensure limits include values across all plots.

b + geom_curve(aes(yend = lat + 1,
xend = long + 1), curvature = 1) - x, xend, y, yend,
alpha, angle, color, curvature, linetype, size

a +geom_path(lineend = "butt",
linejoin = "round", linemitre = 1)
X, ¥, alpha, color, group, linetype, size

color, fill, group, subgroup, linetype, size

b + geom_rect(aes(xmin = long, ymin = lat,
xmax = long + 1, ymax = lat + 1)) - xmax, xmin,
ymax, ymin, alpha, color, fill, linetype, size

a +geom_ribbon(aes(ymin = unemploy - 900,
ymax = unemploy + 900)) - x, ymax, ymin,
alpha, color, fill, group, linetype, size

r\
. a+geom_polygon(aes(alpha =50)) - x, y, alpha,
I

LINE SEGMENTS
common aesthetics: x, y, alpha, color, linetype, size

b + geom_abline(aes(intercept =0, slope = 1))
b + geom_hline(aes(yintercept = lat))

-
mamm | b + geom_vline(aes(xintercept = long))

b + geom_segment(aes(yend = lat + 1, xend = long + 1))
b + geom_spoke(aes(angle = 1:1155, radius = 1))

ONE VARIABLE continuous
c <- ggplot(mpg, aes(hwy)); c2 <- ggplot(mpg)

c + geom_area(stat = "bin")
‘ X, ¥, alpha, color, fill, linetype, size
c + geom_density(kernel = "gaussian")
/\ X, Y, alpha, color, fill, group, linetype, size, weight

c +geom_dotplot()
§ X, y, alpha, color, fill

c+ geom_freqpoly()
/J\ X, ¥, alpha, color, group, linetype, size

c + geom_histogram(binwidth = 5)
III X, Y, alpha, color, fill, linetype, size, weight
III Il

- c2+geom_qq(aes(sample = hwy))
- x,y, alpha, color, fill, linetype, size, weight

discrete
d <- ggplot(mpg, aes(fl))

d + geom_bar()
II X, alpha, color, fill, linetype, size, weight
ml

Use a geom function to represent data points, use the geom’s aesthetic properties to represent variables.

TWO VARIABLES
both continuous
e <- ggplot(mpg, aes(cty, hwy))

al et geom_label(aes(label = cty)) - x, y, label,
Ca alpha, angle, color, family, fontface, hjust,
- lineheight, size, vjust

(a)

e + geom_point()
X, Y, alpha, color, fill, shape, size, stroke

e + geom_quantile()
X, ¥, alpha, color, group, linetype, size, weight

e + geom_rug(sides = “bl")
X, Y, alpha, color, linetype, size

i
e + geom_smooth(method = Im)
X, Y, alpha, color, fill, group, linetype, size, weight

e + geom_text(aes(label = cty)) - x, y, label,
alpha, angle, color, family, fontface, hjust,
lineheight, size, vjust

b=
w
O x

one discrete, one continuous
f <~ ggplot(mpg, aes(class, hwy))

f+geom_col()
. I X, Y, alpha, color, fill, group, linetype, size
[|

B x,y, lower, middle, upper, ymax, ymin, alpha,

Q . f+geom_boxplot()
color, fill, group, linetype, shape, size, weight

£ f+geom_dotplot(binaxis = "y", stackdir = “center")

X, Y, alpha, color, fill, group

f + geom_violin(scale = “area"
X, ¥, alpha, color, fill, group, linetype, size, weight

both discrete
g <- ggplot(diamonds, aes(cut, color))

.. g + geom_count()
c ® X, ¥, alpha, color, fill, shape, size, stroke

. i, e+geom_jitter(height=2, width =2)
X, ¥, alpha, color, fill, shape, size

THREE VARIABLES

continuous bivariate distribution
h <- ggplot(diamonds, aes(carat, price))

h + geom_bin2d(binwidth = c(0.25, 500))
X, ¥, alpha, color, fill, linetype, size, weight

h + geom_density_2d()
X, Y, alpha, color, group, linetype, size

h + geom_hex()
X, ¥, alpha, color, fill, size

B

continuous function
i <- ggplot(economics, aes(date, unemploy))

i + geom_area()

X, ¥, alpha, color, fill, linetype, size
/\//‘\ i + geom_line()

X, ¥, alpha, color, group, linetype, size

_,mr",lL i + geom_step(direction ="hv")

X, Y, alpha, color, group, linetype, size

visualizing error
df <- data.frame(grp = c("A", "B"), fit = 4:5, se = 1:2)
j <- ggplot(df, aes(grp, fit, ymin = fit - se, ymax = fit + se))

H j+geom_crossbar(fatten =2) - x, y, ymax,
HEl ymin, alpha, color, fill, group, linetype, size

1 j + geom_errorbar() - x, ymax, ymin,
alpha, color, group, linetype, size, width
Also geom_errorbarh().

| | | j+ geom_linerange()
X, ymin, ymax, alpha, color, group, linetype, size

4 ¢t j+geom_pointrange() - X, y, ymin, ymax,
t alpha, color, fill, group, linetype, shape, size

maps

Draw the appropriate geometric object depending on the
simple features present in the data. aes() arguments:
map_id, alpha, color, fill, linetype, linewidth.

nc <- sf::st_read(system.file("shape/nc.shp", package = "sf"))

ggplot(nc) +
geom_sf(aes(fill = AREA))

seals$z <- with(seals, sqrt(delta_long”2 + delta_lat”2)); | <- ggplot(seals, aes(long, lat))

L + geom_contour(aes(z = z))
X, Y, z, alpha, color, group, linetype, size, weight

L + geom_contour_filled(aes(fill = z))
X, Y, alpha, color, fill, group, linetype, size, subgroup

L + geom_raster(aes(fill = z), hjust = 0.5,
vjust = 0.5, interpolate = FALSE)

X, ¥, alpha, fill

| + geom_tile(aes(fill = z))
X, ¥, alpha, color, fill, linetype, size, width

CC BY SA Posit Software, PBC « info@posit.co « posit.co « Learn more at ggplot2.tidyverse.org « HTML cheatsheets at pos.it/cheatsheets « ggplot2 3.5.2 « Updated: 2025-08

mailto:info@posit.co
http://posit.co
http://ggplot2.tidyverse.org
https://pos.it/cheatsheets

StatS An alternative way to build a layer.

A stat builds new variables to plot (e.g., count, prop).

=, pem [

data stat geom coordinate plot

X=X system
y =count y

Visualize a stat by changing the default stat of a geom function,
geom_bar(stat="count") or by using a stat function,
stat_count(geom="bar"), which calls a default geom to make
a layer (equivalent to a geom function).

Use after_stat(name) syntax to map the stat variable name to
an aesthetic.

u geom to use
i +stat denSIty_zd(aes (fill = after_stat(level)),

geom = "polygon")
variable created by stat

¢ + stat_bin(binwidth = 1, boundary = 10)
X,y | count, ncount, density, ndensity

c + stat_count(width=1) x, y | count, prop

c + stat_density(adjust = 1, kernel = "gaussian")
X,y | count, density, scaled

e + stat_bin_2d(bins = 30, drop = T)

X, Y, fill| count, density

e + stat_bin_hex(bins =30) x, y, fill | count, density

e + stat_density_2d(contour=TRUE, n =100)
X, Y, color, size | level

e + stat_ellipse(level = 0.95, segments =51, type ="t")

L + stat_contour(aes(z=z)) x, y, z, order | level

L + stat_summary_hex(aes(z = z), bins = 30, fun = max)
X, Y,z fill | value

L + stat_summary_2d(aes(z = z), bins = 30, fun = mean)

X, Y,z fill | value

f + stat_boxplot(coef=1.5)

X,y | lower, middle, upper, width , ymin, ymax

f + stat_ydensity(kernel = "gaussian", scale = "area") x, y |
density, scaled, count, n, violinwidth, width

e +stat_ecdf(n=40) x,y| x,y

e + stat_quantile(quantiles = ¢(0.1, 0.9),
formula =y ~ log(x), method ="rq") x,y | quantile

e + stat_smooth(method ="Im", formula=y ~x,se =T,
level =0.95) X, y | se, X, y, ymin, ymax

ggplot() + xlim(-5, 5) + stat_function(fun = dnorm,

n =20, geom = “point”) x| x,y

ggplot() + stat_qq(aes(sample = 1:100))
X, Y, sample | sample, theoretical

e +stat_sum() x, y, size | n, prop

e + stat_summary(fun.data = "mean_cl_boot")

h + stat_summary_bin(fun = "mean", geom = "bar")
e + stat_identity()

e + stat_unique()

== posit

S C a le S Override defaults with scales package.

Scales map data values to the visual values of an
aesthetic. To change a mapping, add a new scale.

n <- d + geom_bar(aes(fill = fl))

al I I aesthetic | prepackaged scale-specific
@ to adjust | scale to use arguments
n +scale f|ll _manual(

I values = c("skyblue", "royalblue”, "blue", "navy"),
I llmlts C lldll Il n Ilpll n Il) breaks C(lldll nan llpll “rll)
name_ Ilfuelll labels c(IIDII IIElI IIPII IIRII))

titletousein | labelstouse | breaksto usein

range of values legend/axis J in legend/axis legend/axis

toinclude in

GENERAL PURPOSE SCALES

Use with most aesthetics

scale_*_continuous() - Map cont’ values to visual ones.
scale_*_discrete() - Map discrete values to visual ones.

scale_*_binned() - Map continuous values to discrete bins.

scale_*_identity() - Use data values as visual ones.

scale_*_manual(values = c()) - Map discrete values to
manually chosen visual ones.

scale_*_date(date_labels ="%m/%d"),
date_breaks ="2 weeks") - Treat data values as dates.

scale_*_datetime() - Treat data values as date times.
Same as scale_*_date(). See ?strptime for label formats.

X &Y LOCATION SCALES

Use with x or y aesthetics (x shown here)

scale_x_log10() - Plot x on log10 scale.
scale_x_reverse() - Reverse the direction of the x axis.
scale_x_sqrt() - Plot x on square root scale.

COLORAND FILL SCALES (DISCRETE)

n + scale_fill_brewer(palette = "Blues")
i I For palette choices:
RColorBrewer::display.brewer.all()

n + scale_fill_grey(start=0.2,
lI end = 0.8, na.value ="red")

COLORAND FILL SCALES (CONTINUOUS)
o <- ¢+ geom_dotplot(aes(fill = x))

0*23 o + scale_fill_distiller(palette = “Blues”)

!i o + scale_fill_gradient(low="red", high=“yellow")
[

o + scale_fill_gradient2(low = "red", high = “blue”,

mid = "white", midpoint = 25)

$ts
. o + scale_fill_gradientn(colors = topo.colors(6))
Also: rainbow(), heat.colors(), terrain.colors(),
.! cm.colors(), RColorBrewer::brewer.pal()
SHAPE AND SIZE SCALES

p <- e+ geom_point(aes(shape = fl, size = cyl))

p + scale_shape() + scale_size()
< p + scale_shape_manual(values = ¢(3:7))
+>< 012345 67 891011121314 151617 181920 21 22232425
OO0A+XOVRK(DOXXHRKALOOAS O o 0 IOAY
® pt scale_radius(range = ¢(1,6))
® p + scale_size_area(max_size = 6)

Coordinate Systems

r <-d+geom_bar()

r + coord_cartesian(xlim = c(0, 5)) - xlim, ylim
The default cartesian coordinate system.

r + coord_fixed(ratio = 1/2)
_ _ B ratio, xlim, ylim - Cartesian coordinates with
fixed aspect ratio between x and y units.

r + coord_flip()
Flip cartesian coordinates by switching
x and y aesthetic mappings.

N

]

|

—

A r+coord_polar(theta = "x", direction=1)
| theta, start, direction - Polar coordinates.

r + coord_trans(y = “sqrt") - x, y, xlim, ylim
I Transformed cartesian coordinates. Set xtrans
-nll and ytrans to the name of a window function.

1+ coord_sf() - xlim, ylim, crs. Ensures all layers
use a common Coordinate Reference System.

Position Adjustments

Position adjustments determine how to arrange geoms
that would otherwise occupy the same space.

s <- ggplot(mpg, aes(fl, fill = drv))

s + geom_bar(position = "dodge")
Arrange elements side by side.

. & L s + geom_bar(position = "fill")
Stack elements on top of one
another, normalize height.

e + geom_point(position = "jitter")
Add random noise to X and Y position of
each element to avoid overplotting.

e + geom_label(position = "nudge")
Nudge labels away from points.

s + geom_bar(position = "stack")
I I I Stack elements on top of one another.
Each position adjustment can be recast as a function
with manual width and height arguments:
s+ geom_bar(position = position_dodge(width = 1))

Themes

I r + theme_bw() r + theme_classic()
White background lI .
==l yith grid linges. r+theme_light()

r + theme_linedraw()

I r + theme_gray() I
—-=lll Greybackground ___IIl r+theme_minimal()

(default theme). Minimal theme.
r + theme_dark() lI r + theme_void()
Dark for contrast. = -==88 gmpty theme.

r + theme() Customize aspects of the theme such

as axis, legend, panel, and facet properties.

r+ labs(title = “Title”) + theme(plot.title.position = “plot”)
r+theme(panel.background = element_rect(fill = “blue”))

Faceting

Facets divide a plotinto
subplots based on the
values of one or more
discrete variables.

t <- ggplot(mpg, aes(cty, hwy)) + geom_point()
t + facet_grid(. ~ fl)
i Facet into columns based on fl.

t + facet_grid(year ~.)
Facet into rows based on year.

t + facet_grid(year ~ fl)
= Facetinto both rows and columns.

t + facet_wrap(~ fl)
Wrap facets into a rectangular layout.
Set scales to let axis limits vary across facets.

t + facet_grid(drv ~ fl, scales = "free")
x and y axis limits adjust to individual facets:
"free_x" - x axis limits adjust
"free_y" -y axis limits adjust

Set labeller to adjust facet label:
t + facet_grid(. ~ fl, labeller = label_both)
fl:c fl: d fl:e fl:p fl:r

t + facet_grid(fl ~ ., labeller =label_bquote(alpha * .(fl)))

c d e

« o o aoP o

Labels and Legends

Use labs() to label the elements of your plot.

t+ labs(x = "New x axis label", y ="New y axis label",
title ="Add a title above the plot",
subtitle = "Add a subtitle below title",
caption = "Add a caption below plot",
alt = "Add alt text to the plot",
= "New @135 legend title")

t + annotate(geom = "text", x =8,y =9, label = “A")
Places a geom with manually selected aesthetics.

p + guides(x = guide_axis(n.dodge = 2)) Avoid crowded
or overlapping labels with guide_axis(n.dodge or angle).

%‘ uides(fill = “none") Set legend type for each
aest etic: colorbar, legend, or none (no legend).

n + theme(legend.position = "bottom")
Place legend at "bottom", "top", "left", or “right”.

n + scale_fill_discrete(name = "Title",
labels C("A" |IBII IICII IlDll IIEII))
Set legend title and labels with a scale function.

Zooming

J' Without clipping (preferred):

7 t + coord_cartesian(xlim = c(0, 100), ylim = ¢(10, 20))

With clipping (removes unseen data points):
t +xlim(0, 100) + ylim(10, 20)

:< t + scale_x_continuous(limits = ¢c(0, 100)) +
scale_y_continuous(limits = c(0, 100))

CC BY SA Posit Software, PBC « info@posit.co « posit.co « Learn more at ggplot2.tidyverse.org « HTML cheatsheets at pos.it/cheatsheets « ggplot2 3.5.2 « Updated: 2025-08

mailto:info@posit.co
http://posit.co
http://ggplot2.tidyverse.org
https://pos.it/cheatsheets

Dates and times with lubridate : : CHEATSHEET

Date_tlmes 2017-11-28 12:00:00

A date-time is a point on the timeline,
stored as the number of seconds since
1970-01-01 00:00:00 UTC

dt <- as_datetime(1511870400)
##"2017-11-28 12:00:00 UTC"

2017-11-28 12:00:00

PARSE DATE-TIMES (Convert strings or numbers to date-times)

1. Identify the order of the year (y), month (m), day (d), hour (h),
minute (m) and second (s) elements in your data.

2. Use the function below whose name replicates the order. Each
accepts a tz argument to set the time zone, e.g. ymd(x, tz="UTC").

ymd_hms(), ymd_hm(), ymd_h().

2017-11-2% ymd_hms("2017-11-28T14:02:00")
ydm_hms(), ydm_hm(), ydm_h().
RO17-22-12 ydm_hms("2017-22-12 10:00:00")
mdy_hms(), mdy_hm(), mdy_h().
11/2%/2017 mdy hms('11/28/2017 1:02:03]
dmy_hms(), dmy_hm(), dmy_h().
1 Jain 2017 dmy_hms("1 Jan 2017 23:59:59")
20170121 ymd(), ydm(). ymd(20170131)
:Jui\j 4 2000 mdy(), myd(). mdy("July 4th, 2000")
4- :)U-Lj 99 dmy(), dym() dmy(”4th of JU[y '99")
2001 3 yq() Q for quarter. yq("2001: Q3")
072020 my(), ym(). my("07-2020")
.01 hms::hms() Also lubridate::hms(),

hm() and ms(), which return
periods.* hms:hms(seconds =0,
minutes = 1, hours = 2)

date_decimal(decimal, tz="UTC")
date_decimal(2017.5)

now(tzone="") Current timein tz
(defaults to system tz). now()
today(tzone="") Current datein a
tz (defaults to system tz). today()

fast_strptime() Faster strptime.
fast_strptime(“9/1/01”, “%y/%m/%d”)

parse_date_time() Easier strptime.
parse_date_time(“09-01-017, "ymd")

2017-11-28

A date is a day stored as
the number of days since
1970-01-01

d<-as_date(17498)
"2017-11-28"

GET AND SET COMPONENTS

Use an accessor function to get a component.
Assign into an accessor function to change a

component in place.
LA RN EENY 11:59:59
pL2pk:-01-31 11:59:59

2018-[J1-31 11:59:59

2018-01-Ff 11:59:59

2018-01-31 [K1:59:59
2018-01-31 11:F):59
2018-01-31 11:59:Ef)
2018-01-31 11:59:59 [Tjyg

12:00:00

An hms is a time stored as
the number of seconds since
00:00:00

t <- hms::as_hms(85)
00:01:25

d##"2017-11-28"
day(d) ## 28

day(d) <-1
d##"2017-11-01"
date(x) Date component. date(dt)
year(x) Year. year(dt)

isoyear(x) The ISO 8601 year.

epiyear(x) Epidemiological year.

month(x, label, abbr) Month.
month(dt)

day(x) Day of month. day(dt)
wday(x, label, abbr) Day of week.
qday(x) Day of quarter.

hour(x) Hour. hour(dt)

minute(x) Minutes. minute(dt)
second(x) Seconds. second(dt)
tz(x) Time zone. tz(dt)

week(x) Week of the year. week(dt)
isoweek() ISO 8601 week.
epiweek() Epidemiological week.

quarter(x) Quarter. quarter(dt)

semester(x, with_year = FALSE)
Semester. semester(dt)

am(x) Isitin the am? am(dt)
pm(x) Isitin the pm? pm(dt)

dst(x) Is it daylight savings? dst(d)

leap_year(x) Is it a leap year?
leap_year(d)

update(object, ..., simple = FALSE)
update(dt, mday =2, hour = 1)

lubridate

WS

Round Date-times

floor_date(x, unit="second")
s Round down to nearest unit.
floor_date(dt, unit="month")

round_date(x, unit = "second")
Round to nearest unit.
round_date(dt, unit ="month")

4|—>

ceiling_date(x, unit ="second",
change_on_boundary = NULL)
Round up to nearest unit.
ceiling_date(dt, unit = "month")

|-

Valid units are second, minute, hour, day, week, month, bimonth,
quarter, season, halfyear and year.

rollback(dates, roll_to_first = FALSE, preserve_hms = TRUE) Roll back to
last day of previous month. Also rollforward(). rollback(dt)

Stamp Date-times

stamp() Derive a template from an example string and return a new
function that will apply the template to date-times. Also
stamp_date() and stamp_time().

1. Derive a template, create a function

Tip: usea
sf <- stamp("Created Sunday, Jan 17, 1999 3:34") P

date with

2. Apply the template to dates day >12

sflymd("2010-04-05"))
[1] "Created Monday, Apr 05,2010 00:00"

Time Zones

R recognizes ~600 time zones. Each encodes the time zone, Daylight
Savings Time, and historical calendar variations for an area. R assigns
one time zone per vector.

Use the UTC time zone to avoid Daylight Savings.
OlsonNames() Returns a list of valid time zone names. OlsonNames()
Sys.timezone() Gets current time zone.

5:00 6:00

Mountain Central 5.g0 with_tz(time, tzone ="") Get

the same date-time in a new
Eastern time zone (a new clock time).
Also local_time(dt, tz, units).
with_tz(dt, "US/Pacific")

force_tz(time, tzone ="") Get
the same clock time in a new

7:00 7:00 : :
Eastern timezone (a new date-time).
Also force_tzs().
7: 90. 7:00 force_tz(dt, "US/Pacific")
Mountain Central

CC BY SA Posit Software, PBC « info@posit.co « posit.co « Learn more at lubridate.tidyverse.org « HTML cheatsheets at pos.it/cheatsheets « lubridate 1.9.4 « Updated: 2025-08

mailto:info@posit.co
http://posit.co
http://lubridate.tidyverse.org/
https://pos.it/cheatsheets

M ath W |th D ate 'tl IMES — Lubridate provides three classes of timespans to facilitate math with dates and date-times.

Math with date-times relies on the timeline,
which behaves inconsistently. Consider how
the timeline behaves during:

Periods track changes in clock times,
which ignore time line irregularities.

Durations track the passage of
physical time, which deviates from
clock time when irregularities occur.

nor +dminutes(90)

Intervals represent specific intervals
of the timeline, bounded by start and
end date-times.

interval(nor, nor + minutes(90))

i,

Not all years -
are 365 days lubridate
due to leap days.

=

Not all minutes
are 60 seconds due to

A normal day nor + minutes(90)
nor <-ymd_hms("2018-01-01 01:30:00"tz="US/Eastern") I
} } } - } } } -
1:00 2:00 3:00 4:00 1:00 2:00 3:00 4:00
The start of daylight savings (spring forward) gap + minutes(90)
gap <-ymd_hms("2018-03-11 01:30:00",tz="US/Eastern")
N SEEE—— > e
1:00 2:00 3:00 4:00 1:00 2:00 3:00 4:00
The end of daylight savings (fall back) :
lap <- ymd_hms("2018-11-04 00:30:00"tz="US/Eastern") lap + minutes(S0)
i } > | i } >
12.:00 1::)0 2:00 3:00 12.:00 1:.00 2:00 3:00
Leap years and leap seconds leap + years(1)
leap < ymd("2019-03-01") |
—i } } }
2019 2020 2021 2019 2020 20.21
PERIODS DURATIONS

Add or subtract periods to model events that happen at specific clock
times, like the NYSE opening bell.

Make a period with the name of a time unit pluralized, e.g.

p <- months(3) + days(12)

p
"3m 12d OH OM 0S"

Number | Number etc
of months | of days :

years(x = 1) x years.

months(x) x months.

weeks(x = 1) x weeks.

days(x = 1) x days.

hours(x =1) x hours.

minutes(x = 1) x minutes.
seconds(x = 1) x seconds.
milliseconds(x = 1) x milliseconds.
microseconds(x = 1) x microseconds
nanoseconds(x = 1) x nanoseconds.
picoseconds(x = 1) x picoseconds.

period(num = NULL, units = "second", ...)
An automation friendly period constructor.
period(5, unit = "years")

as.period(x, unit) Coerce a timespanto a
period, optionally in the specified units.
Also is.period(). as.period(p)

period_to_seconds(x) Convert a period to
the "standard" number of seconds implied
by the period. Also seconds_to_period().
period_to_seconds(p)

== posit

gap + dminutes(90)

2:00 3:00 4:00 1:00

o0 000
2:00 3:00 4:00 1:00
lap + dminutes(90)
| >
0000000
1:00 2:00 3:00 12:00
leap + dyears(1)
(2
cooe?
2020 2021

Add or subtract durations to model physical processes, like battery life.
Durations are stored as seconds, the only time unit with a consistent length.
Difftimes are a class of durations found in base R.

Make a duration with the name of a period prefixed with a d, e.g.

dd <- ddays(14)
dd
"1209600s (~2 weeks)"

Equivalent
lengthin } in common
units

dyears(x = 1) 31536000x seconds.
dmonths(x = 1) 2629800x seconds.
dweeks(x = 1) 604800x seconds.
ddays(x = 1) 86400x seconds.
dhours(x = 1) 3600x seconds.
dminutes(x = 1) 60x seconds.
dseconds(x = 1) x seconds.
dmilliseconds(x = 1) x X 10-3 seconds.
dmicroseconds(x = 1) x X 10-6 seconds.
dnanoseconds(x = 1) x X 102 seconds.
dpicoseconds(x = 1) x X 10-12 seconds.

duration(num = NULL, units ="second", ...)
An automation friendly duration
constructor. duration(5, unit = "years")

as.duration(x, ...) Coerce a timespan to a
duration. Also is.duration(), is.difftime().
as.duration(i)

make_difftime(x) Make difftime with the
specified number of units.
make_difftime(99999)

2:00 3:00 4:00

interval(gap, gap + minutes(90))

N

2:00 3:00 4:00

interval(lap, lap + minutes(90))

L

1:00 2:00 3:00

interval(leap, leap +years(1))

INTERVALS

leap seconds.

Itis possible to create an imaginary date
by adding months, e.g. February 31st

jan31 <-ymd(20180131)
jan31+ months(1)
NA

%m+% and %m-% will roll imaginary
dates to the last day of the previous
month.

jan31 %m+% months(1)
"2018-02-28"

add_with_rollback(el, e2, roll_to_first=
TRUE) will roll imaginary dates to the
first day of the new month.

add_with_rollback(jan31, months(1),
roll_to_first = TRUE)
##"2018-03-01"

Divide an interval by a duration to determine its physical length, divide

an interval by a period to

Make an interval with interval() or %--%, e.g.

i <-intervallymd("2017-01-01"), d)
j<-d%--% ymd("2017-12-31")

mm)
I

)
i
<4

— /——l

| -

determine its implied length in clock time.

Start | End
Date] Date

##2017-01-01 UTC--2017-11-28 UTC
##2017-11-28 UTC--2017-12-31 UTC

a %within% b Does interval or date-time a fall
within interval b? now() %within% i

int_start(int) Access/set the start date-time of
an interval. Also int_end(). int_start(i) <- now();
int_start(i)

int_aligns(intl, int2) Do two intervals share a
boundary? Also int_overlaps(). int_aligns(i, j)

int_diff(times) Make the intervals that occur
between the date-times in a vector.
v <-c(dt, dt + 100, dt + 1000); int_diff(v)

int_flip(int) Reverse the direction of an
interval. Also int_standardize(). int_flip(i)

int_length(int) Length in seconds. int_length(i)

int_shift(int, by) Shifts an interval up or down
the timeline by a timespan. int_shift(i, days(-1))

as.interval(x, start, ...) Coerce a timespan to
an interval with the start date-time. Also
is.interval(). as.interval(days(1), start = now())

CC BY SA Posit Software, PBC « info@posit.co « posit.co « Learn more at lubridate.tidyverse.org « HTML cheatsheets at pos.it/cheatsheets « lubridate 1.9.4 « Updated: 2025-08

mailto:info@posit.co
http://posit.co
http://lubridate.tidyverse.org/
https://pos.it/cheatsheets

Apply functions with purrr

Map Functions

ONE LIST

map(.x, .f, ...) Apply a function to each element
of a list or vector, and return a list.

x <-list(a=1:10,b =11:20, c = 21:30)

ll< “St(x C(lla” IIb“),y:C(”C”’ Ildll))

map(l1, sort, decreasing = TRUE)
-::::g .
u. .

fun
map(|M|, fun, ...) — fun
map_dbl(.x, .f,...)
> 5 Return a double vector.

fun
map_dbl(x, mean)

map_int(.x, .f,...)
2 | Return an integer vector.
map_int(x, length)

map_chr(.x, .f,...)
- Return a character vector.
map_chr(l1, paste, collapse ="")

(L D))
&

map_lgl(.x, .f,...)
— Return a logical vector.
map_lgl(x, is.integer)

(L D))

map_vec(.x, .f,...)
_» Return a vector that is of the
b simplest common type.
map_vec(l1, paste, collapse = ")

effects, return invisibly.

walk(.x, .f, ...) Trigger side
_> E.E . . .
'l walk(x, print)

TWO LISTS

map2(.x, .y, .f, ...) Apply a function to pairs of
elements from two lists or vectors, return a list.
y <-list(1, 2, 3); z <-list(4, 5,6); [2 <- list(x="a", y ="2")

map2(x, y\x y) Xy)
-’-1:::§+@
n(MM,...

fun
map2(@@fun) —> fun
map2_dbl(.x, .y, .f,...) Return
> 5 adouble vector.
.0 map2_dbl(y, z,~ .x/.y)

map2_int(.x, .y, .f, ...) Return
- an integer vector,
map2_int(y,z, " +")
B
map2_chr(.x, .y, .f,...) Return

a character vector.
1 |l & | map2_ chr(ll 12, paste
I | collapse =", sep=":")

mlapz_llgl(.x, Y, .f,...) Return
a logical vector.

EE & map2_lgl(12, 11, " %in%")
map2_vec(.x, .f,...)

Return a vector that is of the
- | simplest common type.
& map2_vec(l1, 12, paste,
collapse=""sep="")

_> walk2(.x, .y, .f, ...) Trigger
= side effects, return invisibly.
walk2(objs, paths, save)

imap(.x, .f, ...) is shorthand for map2(.x,
names(.x), .f) or map2(.x, seq_along(.x), .f)

CHEATSHEET

MANY LISTS

pmap(.l, .f, ...) Apply a function to groups of
elements from a list of lists or vectors, return a list.
pmap(

list(x, v, 2),

function(first, second, third) first * (second + third)

)
fun(m
pmap(fun,...)=>fun(EBN..)>
fun(MEM. ..

pmap_dbl(.|, .f,...)
m ;| Return a double vector.
m pmap_dbl(list(y, z), ~ x/.y)

pmap_int(.|, .f,...)
Return an mteger vector.
pmap_int(listly, z), "+)

(HED)

(mmE)
v
a

pmap_chr(.l, .f,...)
Return a character vector.
pmap_chr(list(l1, 12), paste,
collapse="",sep="")

(HED)

(EmE)
v
o

pmap_lgl(.,, f,...)
Return a logical vector.
THE omap lglisti2, 1), %in%")

(mED)
D
=

pmap_vec(.l, .f,...)

Return a vector that is of the
Il | simplest common type.
H &l pmap_vec(list(l1, 12) Ppaste,

nn

collapse="" sep =

pwalk(.l, .f,...) Trigger side
@@E e 5 = effects, return invisibly.
pwalk(list(objs, paths), save)

Function Shortcuts depending on whether .x is named or not.

Use \(x) with functions like map() that have Use \(x, y) with functions like map2() that have Use \(x, y, z) etc with functions like pmap() that Use \(x, y) with functions like imap(). .x will get
single arguments. two arguments. have many arguments. the list value and .y will get the index, or name if
map(L, \(x) x +2) map2(L, p, \(x, y) x +y) pmap(list(x, y, z), \(x,y,) x +y / 2) available.
becomes becomes becomes imap(list("a", "b", "c"), \(x, y) paste0(y, ": ", x))

map(l, function(x) x + 2) outputs "index: value™ for each item

== posit

map2(l, p, function(l, p) | + p) pmap(list(x, y, z), function(x, y, z) x * (y + z))

Use a string or an integer with any map function to index list elements by name or position. map(l, "name") becomes map(l, function(x) x[["'name™]])

CC BY SA Posit Software, PBC « info@posit.co « posit.co « Learn more at purrr.tidyverse.org « HTML cheatsheets at pos.it/cheatsheets « purrr 1.1.0 « Updated: 2025-08

mailto:info@posit.co
http://posit.co
http://purrr.tidyverse.org/
https://pos.it/cheatsheets

>l modify(.x, .f, ...) Apply a

bl function to each element. Also

c modify2(), and imodify().

d modify(x, ~.+ 2)
am) (2 modify_at(.x, .at, .f,...) Apply a
b bl function to selected elements.
¢ < Also map_at().
d d modify_at(x, "b", ~.+ 2)
) > (3 modify_if(.x, .p, .f, ...) Apply a
Y | Y | function to elements that pass
c c a test. Also map_if{().
i) (dl modify_if(x, is.numeric,~.+2)

XY | xy modify_depth(.x, .depth, .f, ...)
Apply function to each element
CED (bED| a4t given level of a list. Also
map_depth().

modify_depth(x, 1, ~.+ 2)
Reduce

reduce(.x, .f, ..., .init, .

dir = c("forward", "backward"))

Apply function recursively to each element of a
list or vector. Also reduce2().

reduce(x, sum)

a b
nes (L2 2 8)-ancl,
C

func(m,m)

d
func(m,m)

—
H— N

accumulate(.x, .f, ..., .init) Reduce a list, but also
return intermediate results. Also accumulate2().
accumulate(x, sum)

a—

a b
ner (LB 8 8)~tonlh &)
T} ¢

func(m,m) —
 d
func(m,m)—

== posit

compact(.x, .p = identity)
Discard empty elements.
compact(x)

keep_at(x, at)

Keep/discard elements based
by name or position.
Conversely, discard_at().
keep_at(x, “a”)

set_names(x, nm =Xx)

a —»(p .
b q Set the names of a vector/list
c r directly or with a function.

Set_names(x’ C:<lel’ qul’ Hr_lv)>
set_names(x, tolower)

Predicate functions

keep(.x,.p, ...)
—>
C

Keep elements that pass a
logical test.

Conversely, discard().
keep(x, is.numeric)

head_while(.x, .p, ...)
Return head elements until
cl one does not pass.

d Also tail_while().
head_while(x, is.character)

detect(.x, .f, ..., dir=
E: _’ c("forward", "backward"),
c .right =NULL, .default = NULL)
Find first element to pass.
detect(x, is.character)

detect_index(.x, .f, ..., dir=
c("forward", "backward"),
.right =NULL) Find index of
first element to pass.
detect_index(x, is.character)

every(.x,.p, ...)
Do all elements pass a test?

every(x, is.character)

—» FALSE

some(.x,.p,...)
Do some elements pass a test?
some(x, is.character)

—» TRUE

none(.x,.p,...)
Do no elements pass a test?
none(x, is.character)

- TRUE

has_element(.x, .y)
Does a list contain an element?
has_element(x, "foo")

—» TRUE

- b pluck(.x, ..., .default=NULL)
Select an element by name or
index. Also attr_getter() and
chuck().
pluck(x, "b")

X |> pluck(“b")

assign_in(x, where, value)
Assign a value to a location
using pluck selection.
assign_in(x, "b", 5)

x |>assign_in("b", 5)

o
|

a —»|a
b

C C
d d

modify_in(.x, .where, .f) Apply
afunctionto avalue ata
selected location.

modify_in(x, "b", abs)

x |> modify_in("b", abs)

Reshape
a -»> list_flatten(.x) Remove a level
bEE of indexes from a list.
| list_flatten(x)

List-Columns

List-columns are columns of a
[max| seq | data frame where each element is
- alist or vector instead of an atomic

3 <int[3] -
4 <inta> Value.Columns can also be lists of
5 <int[5]> dataframes. See tidyr for more

about nested data and list
columns.

WORK WITH LIST-COLUMNS

Manipulate list-columns like any other kind of
column, using dplyr functions like mutate().
Because each element is a list, use map
functions within a column function to
manipulate each element.

Concatenate

x1l<-listla=1,b=2¢c=3)
x2 <-list(
a =data.frame(x
b =data.framely

)

1:2),
"3

list_c(x) Combines elements
into a vector by concatenating
them together.

list_c(x1)

list_rbind(x) Combines
elements into a data frame by

- [] row-binding them together.
list_rbind(x2)
list_cbind(x) Combines
[] elements into a data frame by
-] column-binding them

together.
list_cbind(x2)

list_transpose(.|, .names =
NULL)

Transposes the index order in
a multi-level list.
list_transpose(x)

map(), map2(), or pmap() return lists and will
create new list-columns.

list function,

return list
starwars |>
transmute(ships = map2(vehicles,
starships,
append))

Suffixed map functions like map_int() return an
atomic data type and will simplify list-columns
into regular columns.

list function,
return int

starwars |>
mutate(n_films = map_int(films, length))

CC BY SA Posit Software, PBC « info@posit.co « posit.co « Learn more at purrr.tidyverse.org « HTML cheatsheets at pos.it/cheatsheets « purrr 1.1.0 « Updated: 2025-08

mailto:info@posit.co
http://posit.co
http://purrr.tidyverse.org/
https://pos.it/cheatsheets

Publish and Share with Quarto : : CHEATSHEET

Author

PLAIN TEXT

- m—

or Jupyter notebooks.

Write in a rich Markdown syntax.

\/ PRESENTATIONS AND MORE

WRITE AND CODE IN

Author documents as .qmd files

Render — Publish

GENERATE DOCUMENTS, SHARE YOUR WORK

WITH THE WORLD

Produce HTML, PDF, MS Word
reveal.js, MS Powerpoint, Beamer
Websites, blogs, books...

Quickly deploy to
GitHub Pages, Netlify, Quarto Pub,
Posit Cloud, or Posit Connect

GET QUARTO
https://quarto.org/docs/download
Or use version bundled with Positron or RStudio

GET STARTED
https://quarto.org/docs/get-started

Author

SOURCE FILE: hello.gmd

Render

RENDERED OUTPUT: hello.html

title: "Hello, Penguins" .
il Set format(s) and options

execute: Use YAML Syntax
echo: false J

Meet th i i i
eet the penguins ## Write with **Markdown**

The “penguins’ data contain| RStudio: Help>Markdown Quick Reference

Hello, Penguins

Meet the penguins

The three species of penguins have quite distinct distributions of physical

dimensions (Figure 1).
) = \

Features for scientific

from three islands in the @ n Use Visual Editor . publishing
The three species of pengui} 5 . Cross references, citations,
distributions of physical dimensions (@fig-penguins). . . equations, and more
CAr} <+ Include code e & 5- L e s
1§be1: flg—[..)engu:'Lns) R, Python, Julia, Observable, £ % * et - g’ :.. : .8
#| fig-cap: "Dimensions of penguins or any language with a £ S . s C e 20 4
#| warning: false T Jupyter kernel < . ® . ®eele ® . .
library(tidyverse, quietly = TRUE) g o g 088, Output integrated into document
library(palmerpenguins) = e o o e Control how output appears with
penguins |> < °® L s, .. special comments in your code

ggplot(aes(x = flipper_length_mm, y = bill_length_mm)) + 20 . o' l:'3=':°§. o **

geom_point(aes(color = species)) + oo o8 l; LI

scale_color_manual(® e 03 e 30° : W 3

values = c("darkorange", "purple", "cyand4")) + oe ',.E of. : g .

USEATOOL WITH ARICH EDITING
EXPERIENCE

VS Code +
ERStudio Positron Quarto

extension

OR ANY TEXT EDITOR

Quarto documents (.gmd) can be
edited in any tool that edits text.

Insert elements like
code cells, cross
references, and

more.

Run code cells as you write Apply formatting in
Visual Editor. Saved

as Markdown in
Edit Quarto documents with a Visual Editor ~ SOUCe. *

Render with a button or keyboard shortcut

Normal B [Format v Insert v Table Vv

== posit

Save, then render to preview the
document output.

BEHIND THE SCENES

When you render a document, Quarto:

1. Runsthe code and embeds results
and text into an .md file with:

A Knitr, if any {r} cells or,
@ Use Render button &= Jupyter, if any other cells.

: 2. Converts the .md file into the output
n Use Preview button format with Pandoc.
The resulting HTML/PDF/MS Word/etc.

document will be created and saved in the
same directory as the source .qmd file.

Terminal
quarto preview hello.gmd

Publish

Terminal
quarto publish {venue} hello.qgmd

{venue}: quarto-pub, connect, gh-pages, netlify,
confluence

Free publishing service for

A
P
qp QuartoPub Quarto content.

e Org-hosted, control access,
% pOSIt Connect schedule updates.

e Use Publish button '@;-

Use Posit Publisher
he extension

Quarto Projects

CREATE WEBSITES, BOOKS, AND MORE

A directory of Quarto documents +
a configuration file (_quarto.yml)

See examples at https://quarto.org/docs/gallery/

Get started from the command line:

Terminal
quarto create project {type}

{type}: default, website, blog, book, confluence,
manuscript

e Use File > New Project
n Use Quarto: Create Project command

Artwork from "Hello, Quarto" keynote by Julia Lowndes
and Mine Cetinkaya-Rundel, presented at RStudio
Conference 2022. Illustrated by Allison Horst.

CC BY SA Posit Software, PBC « info@posit.co « posit.co « Learn more at quarto.org « HTML cheatsheets at pos.it/cheatsheets « Quarto 1.7 « Updated: 2025-07

mailto:info@posit.co
http://posit.co
http://quarto.org
https://pos.it/cheatsheets
https://quarto.org/docs/download/

Include Code

CODE CELLS

Code cells start with

LSRN LSRN

{language} and end with .

A Use Insert Code Chunk/Cell

S A{r} " {python}
#| label: chunk-id #| label: chunk-id
library(tidyverse)

import pandas as pd

Other languages: {julia}, {ojs}
Add code cell options with # | comments.

Cell options control execution, figures, tables, layout
and more. See them all at:
https://quarto.org/docs/reference/cells

EXECUTION OPTIONS

OPTION DEFAULT EFFECTS

false: hide code

echo true fenced: include code cell syntax

eval true false:don’trun code

include true false:don’tinclude code or results
OULPEL Uil ;asliss?:t?e%r::eigs :tjsd:srri\s\zl;:a rkdown
warning true false:don’tinclude warnings in output
T false true include error in output and

continue with render

Set execution options at the cell level:

CAr}

#| echo: false

**{python}
#| echo: false @

Or, globally in the YAML header with the execute option:

——— Set options in code

execute: cells with # |
. comments and YAML
echo: false syntax:

key: value

INLINE CODE

Use computed values directly in text sections.
Code is evaluated at render and results appear as
text.

KNITR JUPYTER OUTPUT
Valueis "r2+2°. Valueis "{python}2+2". Valueis4.

== posit

Set Format and Options

SET FORMAT OPTIONS MULTIPLE FORMATS

title: "My Document” title: "My Document"

format: —J» toc: true
html: format:
code-fold: true html:
toc: true code-fold: true

pdf: default

14

Indent options 4

spaces

Top-level options
Indent format 2 apply to all formats
spaces

Common formats: html, pdf, docx, odt, rtf,
gfm, pptx, revealjs, beamer

Render all formats:
quarto render hello.gmd
Render a specific format:

quarto render hello.gmd --to pdf

Add Content

FIGURES (4] MARKDOWN

I[CAP] (image.png) {#fig-LABEL fig-alt="ALT"}

“"“{python} <1F--{IIIIII'

#| label: fig-LABEL
#| fig-cap: CAP
#| fig-alt: ALT
{{ plot code here }}

COMPUTATION

CROSS REFERENCES

1. Add labels
Code cell: add option 1label: prefix-LABEL
Markdown: add attribute #prefix-LABEL

2. Add references @prefix-LABEL, e.g.

You can see in @fig-scatterplot,

that...

Prefix Renders Prefix Renders
fig- Figure 1 eq- Equation 1
tbl- Table 1 sec- Section 1

2
-4 o
% iz @& quarto
OPTION £2-3 DESCRIPTION
- toc X X X Add a table of contents (true or false)
2 toc-depth X X X Lowest level of headings to add to table of contents (e.g. 2, 3)
anchor-sections X Show section anchors on mouse hover (true or false)
highlight-style X X X Syntax highlighting theme (e.g. arrow, pygments, kate, zenburn)
o mainfont,monofont X X Fontname. HTML: sets CSS font-family; LaTeX: via fontspec package
27'>)‘ theme X Bootswatch theme name (e.g. cosmo, darkly, solar etc.) %
css X CSS or SCSSfile to use to style the document (e.g. "style.css") é
reference-doc X docx/pptx file containing template styles (e.g. file.docx, file.pptx) S
include-in-header X X 'I;iézs)g_%%rg:;ni;t:hi‘racel?:fi;p_ggz:;er of output document, also include- z
keep-md X X X Keep intermediate markdown (true or false), also keep-ipynb, keep-tex %
x documentclass X LaTeX document class, set document class options with classoption
E pdf-engine X LaTeX engine to produce PDF output (xelatex, pdflatex, lualatex) ¢
cite-method X Method used to format citations (citeproc, natbib, biblatex)
o code-fold X Let readers toggle the display of R code (false, true, or show) v
§ code-tools X Add menu for hiding, showing, and downloading code (true or false)
code-overflow X Display of wide code (scroll, or wrap) v
v fig-align X X / Alignment of figures (default, left, right, or center) v
Eﬁ fig-width, fig-height X X X Default width and height for figures in inches Knitr
- fig-format X X X Format for Matplotlib or R figures (retina, png, jpeg, svg, or pdf)
Visit https://quarto.org/docs/reference/ to see all options by format
TABLES B COMPUTATION Output a Markdown table or an HTML table from your code
MARKDOWN KNITR JUPYTER Add Markdown () to Markdown output:
|object | radius| asa\?ImI)mﬁlfableo to produce """ {python}
oo P | #| label: tbl-LABEL
|Sun | 696000 o {r} #| tbl-cap: CAPTION
|[Earth | 6371| #| label: tbl-LABEL import pandas as pd, tabulate

#| tbl-cap: CAPTION
knitr::kable(head(cars))

: CAPTION {#tbl-LABEL}
Insert Table in
® Visual Editor

CITATIONS
1. Add a bibliography file to the YAML header:

flextable, kableExtra.

bibliography: references.bib

2. Add citations: [@citation],or@citation

Use Insert Citations dialog in the
o Visual Editor

Build your bibliography file from your Zotero library,
DO, Crossref, DataCite, or PubMed

Also see the R packages: gt,

from IPython.display import Markdown
df = pd.DataFrame({"A": [1, 2],
"B": [1, 2]1})

Markdown(df.to_markdown(index=False))

caLLouts | Ot

Instead of tip use one of:

211 {.callout-tip} note, caution, warning,

Title or important.

| @ note | /\ warning
Text
R caution ' @ important
SHORTCODES

{{< include _file.qmd >}}
{{< embed file.ipynb#id >}}
{{< video video.mp4 >}}

CC BY SA Posit Software, PBC « info@posit.co « posit.co « Learn more at quarto.org « HTML cheatsheets at pos.it/cheatsheets « Quarto 1.7 « Updated: 2025-07

mailto:info@posit.co
http://posit.co
http://quarto.org
https://pos.it/cheatsheets
https://cwickham.github.io/cheatsheets/html/quarto.html#figures
https://cwickham.github.io/cheatsheets/html/quarto.html#tables
https://cwickham.github.io/cheatsheets/html/quarto.html#layout
https://quarto.org/docs/reference/cells/
https://quarto.org/docs/reference/

Python For Data Science Cheat Sheet

Learn Python for Data Science

NumPy Basics
at www.DataCamp.com

The NumPy library is the core library for scientific computing in
Python. It provides a high-performance multidimensional array

a.shape
>>> len(a)
>>> b.ndim
>>> e.size
>>> b.dtype
>>> b.dtype.name
>>> b.astype (int)

oo oo

Inspecting Your Array
>>>

Array dimensions

Length of array

Number of array dimensions
Number of array elements

Data type of array elements

Name of data type

Convert an array to a different type

>>> np.info (np.ndarray.dtype)

Subsetting

Also see Lists

Subsetting
>>> al2]
3

>>> b[l,2]

6.0

Slicing

>>> a[0:2]
array([1, 2])

>>> b[0:2,1]
array([2., 5.])

Select the element at the 2nd index

Select the element at row 1 column 2
(equivalent to b[1][2])

Select items at index 0 and 1

Select items at rows 0 and 1in column 1

A g 8 H >>> b[:1] Select all items at row o
object, and tools for working with these arrays. Array Mathematics rray (115 20 50 (equivalentto o(0:1, :1)
A A 5 H H H >>> PN 1,:,:
Use the following import convention: %NumPy Arithmetic Operations arfa[yl(m 3.1, o Same as |]
>>> import numpy as np >>> g=a-b Subtraction [4., 5., 6.111)
array([[-0.5, 0., 0.1, >>> a[@ :-1] Reversed array a
NumPy Arrays 3 s a0 arrlayus,j, i3
; Boolean Indexin
1D array 2D array 3D array . Ep;szbtracua’b) izl;?:?::on >>> ala<?] ¢ [> 5] | Select elements from a less than 2
: axis 2 array([[2.5, 4., 6.1, array ([1])
BT~ axis 1 (5., 7., 9.1D) Fancy Indexing
o sfa)s N >>> np.add (b, a) Addition >>> b[[l, 0, 1, 0], [0, 1, 2, 0]] Select elements (1,0, (0,1), (1,2 and (©,0)
axiS O —p . 1 axis 0 —p >>>a /b Division array ([4. , 2., 6., 1.5])
array ([[0.66666667, 1. ;L. 1, >>> b[[1, 0, 1, 0]1(:,[0,1,2,0]] Select a subset of the matrix’s rows
r 0.4 ;0.5 1 array ([[4. ,5. , 6., 4.1, and columns
. >>> np.divide (a,b) Division [1.5 2., 3., 1.5],
Creating Arrays >>> a * b Multiplication [4-5 3-8 300
array([[1.5, 4. , 9. 1,
>>> a = np.array([1,2,3]) [4., 10. , 18.11) . .
>>> b = np.array([(1.5,2,3), (4,5,6)], dtype = float) >>> np.multiply(a,b) Multiplication Array Mani pulation
>>> ¢ = np.array([[(1.5,2,3), (4,5,6)], [(3,2,1), (4,5,6)1], >>> np.exp (b) Exponentiation .
dtype = float) >>> np.sqgrt (b) Square root Transposmg Array
oY >>> np.sin(a) Print sines of an array >>> 1 = np.transpose (b) Permute arraydimensions
Initial Placeholders >>> np.cos (b) Element-wise cosine >>> i.T Permute array dimensions
>>> np.log(a) Element-wise natural logarithm .
>>> np.zeros ((3,4)) Create an array of zeros NSNS el.)dot?f) Dot product 9 Changing Array Shape
>>> np.ones ((2,3,4),dtype=np.int16) Createan array of ones array([[7., 7.1, >>> b.ravel () Flatten the array
>>> d = np.arange (10,25, 5) Create an array of evenly [7., 7.11) >>> g.reshape (3,-2) Reshape, but don’t change data

spaced values (step value) Adding/Removing Elements

>>> np.linspace(0,2,9) Create an array of evenl omparison .
P P T spaced values};number ot)’lsamples) Comp >>> h.resize((2,6)) Return a new array with shape (2,6)
>>> e = np.full((2,2),7) Create a constant array >>> a == Element-wise comparison >>> np.append (h,g) Append items to an array
>>> £ = np.eye (2) Create a 2X2 identity matrix array ([[B B 1, >>> np.insert(a, 1, 5) Insert |1.:ems Inan array
>>> np.random.random((2,2)) Create an array with random values L ’ ’ 11, dtype=bool) . wi . >>> np.delete(a, [1]) Delete items from an array
>>> a < 2 ement-wise comparison fos
>>> np.empty ((3,2)) Create an empty array eyl)) 1, dtypesbool) p Combining Arrays .
>>> np.array equal(a, b) Array-wise comparison >>> np.concatenate ((a,d),axis=0)| Concatenate arrays
. >>> np.vstack((a,b)) Stack arrays vertically (row-wise)
Saving & Loading On Disk Aggregate Functions array([[1. , 2., 3.1,
g oading Un Dis . [1.5, 2., 3.1,
>>> a.sum() Array-wise sum [4., 5., 6.11)
>>> np.save ('rfly,array' ’ 'a) >>> a.min () Array-wise minimum value >>> np.r [e, f] Stack arrays vertically (row-wise)
>>> np.savez'(array.npz', 3 b) >>> b.max (axis=0) Maximum value of an array row >>> np.hstack ((e, f)) Stack arrays horizontally (column-wise)
>>> np.load('my array.npy') >>> b.cumsum(axis=1) Cumulative sum of the elements array([[7., 7., 1., 0.1,
Savi & di T Fil >>> a.mean () Mean L7., 7., 0., 1.11))
aving oading ext Files >>> b.median () Median >>> np.column_stack((a,d)) Create stacked column-wise arrays
>>> np. loadtxt ("myfile. txt") >>> a.corrcoef () Correlation coefficient array ([{ % %g}
>>> np.genfromtxt ("my file.csv", delimiter=',') P>> np.std(b) Standard deviation [3, 2010))
>>> np.savetxt ("myarray.txt", a, delimiter=" ") >>> np.c_[a,d] Create stacked column-wise arrays
Copying Arrays Splitting Arrays
Data Types >>> h = a.view() Create a view of the array with the same data >>[> np- ?{slfi)llt (a, ?12] : . iSn[ﬂletXthe array horizontally at the 3rd
: - P >>> np. Create a copy of the arra array rarray rarray N . .
>>> np.int64 Signed 64-bit integer types . ip_COpy (@) Createad Py fthy >>> np.vsplit (c,2) Split the array vertically at the 2nd index
>>> np.float32 Standard double-precision floating point >>> h = a.copy() reate a deep copy of the array larray ([([1.5, 2., 1.1,
>>> np.complex Complex numbers represented by 128 floats ! 43 . ; . 36]- 10
>>> np.object Python object type
>>> np.string Fixed-length string type >>> a.sort() Sort an array DataCam
>>> np.unicode Fixed-length unicode type >>> c.sort (axis=0) Sort the elements of an array's axis [y .
= Learn Python for Data Science Interactively

Data Wra ngl i ng Tidy Data - A foundation for wrangling in pandas
W|th pa N d as m m Tidy data complements pandas’s vectorized m *
P—

In a tidy operations. pandas will automatically preserve
C h eat S h eet : observations as you manipulate variables. No B
data set:
h d d other format works as intuitively with pandas. —
ttp //pa naas.py ata.o g Each variable is saved Each observation is M > 3 A
in its own column saved in its own row
SyntaXx - creating DataFrames Reshaplng Data - change the layout of a data set
I C P T e —— L ——— . e e)
1 4 7 10 » = = » Order rows by values of a column (low to high).
2 > 8 1 1 1 ' ' .
" » 5 " - - df.sort_values('mpg',ascending=False)
- Pyeaw— (= = Order rows by values of a column (high to low).
= pd.DataFrame
{"a" : [4 ,5, 6], pd.melt(df) df.pivot(columns='var', values='val')| df.rename(columns = {'y":'year'})
"b" : [7, 8, 9], Gather columns into rows. Spread rows into columns. Rename the columns of a DataFrame
"c" : [10, 11, 12]}, A .
index = [1, 2, 3])]] S] d-F.sort_.lndex()
. Sort the index of a DataFrame
Specify values for each column.] [[]
> .
df = pd.DataFrame(] | > | df. res'et_lndex() .
[[4, 7, 10] Reset index of DataFrame to row numbers, moving
[5’ 8’ 11]’ y index to columns.
3 3 3 J
) [6, 9, 12]], pd.concat([df1l,df2]) pd.concat([dfl,df2], axis=1) df.drop(columns=['Length', 'Height'])
1n(11ex=[1_|,: 2, 3]|; 5 Append rows of DataFrames Append columns of DataFrames Drop columns from DataFrame
columns=['a‘', 'b', 'c’

Specify values for each row. p _
F Subset Observations (Rows) Subset Variables (Columns)

[[]] | [I e I
g 1 4 7 10 [1 1 1 | I . 1] |
) 5 3 1 [[1 1 | » [T 1 1 | I . » 1] |
[[1 1 | I I I N I . 1] |
e 2 6 9 12 . .
df = pd.DataFrame(_ df[['width', 'length’, 'species']]
{"a" : [4 ,5, 6] df[df.Length > 7] . df.sample(frac=e. 5_) Select multiple columns with specific names.
"pt s [7 ’8’ 9 ’ Extract rows that meet logical Randomly select fraction of rows. df['width'] or df.width
: [7, 8, 9], criteria. df.sample(n=10) i

df.d duplicat domlv sel Select single column with specific name.
.drop_duplicates() Randomly select n rows. df.filter(regex="regex")

Remove duplicate rows (only df.iloc[16:20] Select columns whose name matches regular expression regex.

[C'd ’1)1(.d.’?)f(e’,2)1, considers columns). Select rows by position. —— . E I
names=['n','v']))) df.head(n) df.nlargest(n, 'value') regex (Regular Expressions) Examples

"c" : [10, 11, 12]},
index = pd.MultilIndex.from_tuples(

| Create DataFrame with a Multilndex) Select first n rows. Select and order top n entries. "\ Matches strings containing a period '
° ° d'F'tail(n) df. nsmalleSt(nJ 'value') 'Length$’ Matches strings ending with word 'Length’
M Eth Od Ch a | n | n Select last n rows. Select and order bottom n entries. . . . o .~
ASepal Matches strings beginning with the word 'Sepal
Most pandas methods return a DataFrame so that 'Ax[1-5]%" Matches strings beginning with 'x' and ending with 1,2,3,4,5
another pandas method can be applied to the Logic in Python (and pandas) "'A(?1Species$).*’ s s e he sl Spadis!
result. This improves readability of code. < | Less than 1= Not equal to df.loc[:, 'x2":"'x4"]
df = (pd.melt(df) — : .) .
> | Greater than df.column.isin(values) Group membership Select all columns between x2 and x4 (inclusive).

.rename(columns={ -
'variable' : ‘'var', == | Equals pd.isnull(obj) Is NaN df.iloc[:, [1,2., 5]] ' ' '
'value' : 'val' }) <= | Less than or equals pd.notnull(obj) Is not NaN dfsileci:;?;??qn.s]ln pO]S-glonE .1’ .2 a|nd|5] gflrSt column is 0).
' ' .10C a > d C
.query(‘'val >= 200') : A Lo . s s N
) = | GEiarEnerciuel | B ot e) Eeat i) | e el o, et e i el Select rows meeting logical condition, and only the specific columns .
http://pandas.pydata.org/ This cheat sheet inspired by Rstudio Data Wrangling Cheatsheet (https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf) Written by Irv Lustig, Princeton Consultants

http://pandas.pydata.org/
https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf
http://www.princetonoptimization.com/

Summarize Data

df['w'].value_counts()
Count number of rows with each unique value of variable

len(df)

of rows in DataFrame.
df['w’'].nunique()

of distinct values in a column.
df.describe()

Basic descriptive statistics for each column (or GroupBy)

]
- =
[

pandas provides a large set of summary functions that operate on
different kinds of pandas objects (DataFrame columns, Series,
GroupBy, Expanding and Rolling (see below)) and produce single
values for each of the groups. When applied to a DataFrame, the
result is returned as a pandas Series for each column. Examples:

sum() min()
Sum values of each object. Minimum value in each object.
count() max()
Count non-NA/null values of Maximum value in each object.
each object. mean()
median() Mean value of each object.
Median value of each object. var()
quantile([0.25,0.75]) Variance of each object.
Quantiles of each object. std()
apply(function) Standard deviation of each
Apply function to each object. object.

Group Data

Handling Missing Data

df.dropna()
Drop rows with any column having NA/null data.
df.fillna(value)
Replace all NA/null data with value.

Make New Columns

df.assign(Area=1lambda df: df.Length*df.Height)
Compute and append one or more new columns.
df['Volume'] = df.Length*df.Height*df.Depth
Add single column.
pd.qcut(df.col, n, labels=False)
Bin column into n buckets.

] | | ENEEEE |
- - Vector - Vector
I functiof - functiol
] |

pandas provides a large set of vector functions that operate on all
columns of a DataFrame or a single selected column (a pandas
Series). These functions produce vectors of values for each of the
columns, or a single Series for the individual Series. Examples:
max(axis=1) min(axis=1)

Element-wise max. Element-wise min.
clip(lower=-10,upper=10) abs()

Trim values at input thresholds Absolute value.

df.groupby(by="col")
Return a GroupBy object,
grouped by values in column
named "col".

df.groupby(level="ind")
Return a GroupBy object,
grouped by values in index
level named "ind".

All of the summary functions listed above can be applied to a group.
Additional GroupBy functions:
size()

Size of each group.

agg(function)
Aggregate group using function.

The examples below can also be applied to groups. In this case, the
function is applied on a per-group basis, and the returned vectors
are of the length of the original DataFrame.
shift(1) shift(-1)

Copy with values shifted by 1. Copy with values lagged by 1.
rank(method="dense") cumsum()

Ranks with no gaps. Cumulative sum.
rank(method="min") cummax()

Ranks. Ties get min rank. Cumulative max.
rank(pct=True) cummin()

Ranks rescaled to interval [0, 1]. Cumulative min.
rank(method="first") cumprod()

Ranks. Ties go to first value. Cumulative product.

_____ Windows Plotting

df.expanding()
Return an Expanding object allowing summary functions to be
applied cumulatively.

df.rolling(n)
Return a Rolling object allowing summary functions to be
applied to windows of length n.

df.plot.hist()
Histogram for each column

df.plot.scatter(x="w',y="h")
Scatter chart using pairs of points

) W 0

Combine Data Sets

df bdf

QU

O W >
W N R

Standard Joins

™ >

A
B
C
D

pd.merge(adf, bdf,
how="left', on="x1")
Join matching rows from bdf to adf.

W N R
zIIE
)

2

pd.merge(adf, bdf,
how="right', on="'x1")
Join matching rows from adf to bdf.

ZnNp
2

o o

pd.merge(adf, bdf,
how="inner', on="'x1")
Join data. Retain only rows in both sets.

1

2 [F
mpd.merge(adf, bdf,
T

1 how="outer', on="x1")

2 [F| Join data. Retain all values, all rows.
3 NaN

NaN| T

Filtering Joins

A
B

adf[adf.x1.isin(bdf.x1)]
1 All rows in adf that have a match in bdf.
2

adf[~adf.x1.isin(bdf.x1)]

3 All rows in adf that do not have a match in bdf.

/

zdf
x1]x2)
B
C
D

2
3
4

ydf

S l‘ll
B 2

c 3

Set-like Operations

N

0O W

OO0 w>»

pd.merge(ydf, zdf)

2 Rows that appear in both ydf and zdf
3 (Intersection).
pd.merge(ydf, zdf, how='outer')
1 Rows that appear in either or both ydf and zdf
2 (Union).
3
4 pd.merge(ydf, zdf, how='outer',
indicator=True)
1 .query('_merge == "left_only"')

.drop(columns=["'_merge'])
Rows that appear in ydf but not zdf (Setdiff).

http://pandas.pydata.org/ This cheat sheet inspired by Rstudio Data Wrangling Cheatsheet (https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf) Written by Irv Lustig, Princeton Consultants

http://pandas.pydata.org/
https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf
http://www.princetonoptimization.com/

Python For Data Science Cheat Sheet
Matplotlib

Learn Python Interactively at www.DataCamp.com

Matplotlib

Matplotlib is a Python 2D plotting library which produces
publication-quality figures in a variety of hardcopy formats

and interactive environments across %(m atp | Otl | b

platforms.

0 Prepare The Data Also see Lists & NumPy

>>> import numpy as np

>>> x = np.linspace (0, 10, 100)
>>> y = np.cos(x)
>>> z = np.sin(x)

2D Data or Images

>>> data 2 * np.random.random((10, 10))

>>> data2 = 3 * np.random.random((10, 10))

>>> Y, X = np.mgrid[-3:3:100j, -3:3:1007]

>>> U = -1 - X**2 + Y

>>> V = 1 + X - Y**2

>>> from matplotlib.cbook import get sample data

>>> img = np.load(get sample data('axes grid/bivariate normal.npy'))

Plot Anatomy & Workflow

The basic steps to creating plots with matplotlib are:
7 Prepare data

Figure 1

Figure

200+ aa

2 Create plot

3 Plot 4 Customize plot

5 Saveplot O Show plot

>>>

>>> y
>>> fig
>>> ax
>>> ax
>>> ax

>>>

>>> x =

ax.set_xlim(1l,
>>> plt.savefig('foo.png"')
>>> plt.show ()

import matplotlib.pyplot as plt
[1,2,3,4]
[10,20,25,30]
= plt.figure () <@STEN
fig.add_subplot (111)
.plot(x, y, color='lightblue', linewidth=3)<@SEEN)
.scatter([2,4,6],

[5,15,25],
color='darkgreen',
marker='"")

6.5)

@ Customize Plot
Colors, Color Bars & Color Maps

>>> plt.plot(x, x, x,
>>> ax.plot(x, y, alpha =
>>> ax.plot(x, y, c='k")
>>> fig.colorbar (im, orientation='horizontal')
>>> im = ax.imshow (img,

cmap="'seismic')

>>> fig, ax = plt.subplots/()
>>> ax.scatter (x,y,marker=".")
>>> ax.plot (x,y,marker="0o")

X**2, x,

0.4)

x**3)

9 Create Plot

[>>> import matplotlib.pyplot as plt]

Figure
>>> fig = plt.figure ()
>>> fig2 = plt.figure (figsize=plt.figaspect (2.0))

All plotting is done with respect to an Axes. In most cases, a
subplot will fit your needs. A subplot is an axes on a grid system.

>>> fig.add_axes ()
>>> axl = filg.add_subplot (221)

row-col-num

>>> ax3 = fig.add_subplot (212)
>>> fig3, axes = plt.subplots(nrows=2,ncols=2)
>>> figd, axes2 = plt.subplots(ncols=3)

Linestyles

>>> plt.plot (x,y,linewidth=4.0)
>>> plt.plot(x,y,1ls="'solid")

>>> plt.plot(x,y,ls="--")
>>> plt.plot(x,y,"'-=",x**2,y**2,'-.")
>>> plt.setp(lines,color="'r',linewidth=4.0)

Text & Annotations

>>> ax.text (1,
2

-1,
'Example Graph',
style='italic"')
>>> ax.annotate ("Sine",
xy=(8, 0),
xycoords='data',
xytext=(10.5, 0),
textcoords='data',
arrowprops=dict (arrowstyle="->",
connectionstyle="arc3"),)

[>>> plt.title(r'S$sigma i=15%', fontsize=20)

l

Limits, Legends & Layouts

Limits & Autoscaling

>>> ax.margins (x=0.0,y=0.1)

>>> ax.axis('equal')

>>> ax.set (x1im=[0,10.5], ylim=[-1.5,1.5])
>>> ax.set x1im(0,10.5)

Legends

>>> ax.set(title="'An Example Axes',

ylabel='Y-Axis"',
xlabel="X-Axis")

>>> ax.legend(loc='best'")

Ticks

>>> ax.xaxis.set (ticks=range(1,5),

ticklabels=[3,100,-12,"foo"])

>>> ax.tick params(axis='y',

Subplot Spacing

direction='inout",
length=10)

>>> fig3.subplots_adjust (wspace=0.5,

hspace=0.3,
left=0.125,
right=0.9,
top=0.9,
bottom=0.1)

>>> fig.tight_layout ()

Axis Spines

>>> axl.spines['top'].set_visible (I'm1ce)

Add padding to a plot

Set the aspect ratio of the plot to 1
Set limits for x-and y-axis

Set limits for x-axis

Set a title and x-and y-axis labels

No overlapping plot elements

Manually set x-ticks

Make y-ticks longer and go in and out

Adjust the spacing between subplots

Fit subplot(s) in to the figure area

Make the top axis line for a plot invisible

>>> axl.spines['bottom'].set position (('outward',10)) Move the bottom axis line outward

9 Plotting Routines 6 Save Plot

Vector Fields

1D Data
>>> lines = ax.plot (x,y) Draw points with lines or markers connecting them
>>> ax.scatter (x,y) Draw unconnected points, scaled or colored
>>> axes[0,0].bar([1,2,3]1,(3,4,5]) Plot vertical rectangles (constant width)
>>> axes[1,0].barh([0.5,1,2.5],[0,1,2]) | Plothoriontal rectangles (constant height)
>>> axes[1l,1].axhline (0.45) Draw a horizontal line across axes
>>> axes[0,1].axvline (0.65) Draw a vertical line across axes
>>> ax.fill(x,y,color="blue') Draw filled polygons
>>> ax.fill between (x,y,color="yellow') | Fillbetween y-valuesando

>>> axes[0,1].arrow(0,0,0.5,0.5)
>>> axes[1l,1].quiver (y,z)
>>> axes[0,1].streamplot (X,Y,U,V)

Add an arrow to the axes
Plot a 2D field of arrows
Plot 2D vector fields

Data Distributions

>>> axl.hist (y)
>>> ax3.boxplot (y)
>>> ax3.violinplot (z)

Plot a histogram

Make a violin plot

Make a box and whisker plot

Save figures
>>> plt.savefig('foo.png')

Save transparent figures
>>> plt.savefig('foo.png',

transparent=7Tr1¢)

[>>> plt.show()

2D Data or Images

Close & Clear

>>> fig,
>>> im =

ax = plt.subplots()
ax.imshow (img,
cmap='gist earth',
interpolation='nearest',
vmin=-2,
vmax=2)

Colormapped or RGB arrays

>>>
>>>
>>>
>>>
>>>

axes2[0] .pcolor (data2)
axes2[0] .pcolormesh (data)
CS = plt.contour (Y, X,U)
axes2[2].contourf (datal)
axes2[2]= ax.clabel (CS)

Plot contours

Pseudocolor plot of 2D array
Pseudocolor plot of 2D array

Plot filled contours
Label a contour plot

>>> plt.cla()
>>> plt.clf ()

>>> plt.close()

Clear an axis
Clear the entire figure
Close a window

DataCamp

Learn Python

r Data Science

Python For Data Science Cheat Sheet Evaluate Your Model’s Performance
Scikit-Learn

Learn Python for data science at www.DataCamp.com Linear Regression Accuracy Score ‘
>>> from sklearn.linear model import LinearRegression >>> knn.score (X_test, y_test) Estimator score method
>>> 1lr = LinearRegression(normalize=) >>> from sklearn.metrics import accuracy score |Metricscoring functions
Support Vector Machines (SVM) >>> accuracy_score(y_test, y pred)

. . . >>> svc = SVC(kernel='linear') >>> from sklearn.metrics import classification report |Precision, recall, fi-score
Scikit-learn is an open source Python library that Naive Bayes >>> print(classification report (y test, y pred))|and support
implements a range of machine learning, >>> from sklearn.naive bayes import GaussianNB Confusion Matrix o)]

. lidati d vi li . | >>> gnb = GaussianNB()_ >>> from sklearn.metrics import confusion matrix
preprocessing, cross-validation and visualization >>> print (confusion matrix(y test, y pred))
algorithms using a unified interface. KNN . . - -

>>> from sklearn import neighbors Regression Metrics
A Basic Example >>> knn = neighbors.KNeighborsClassifier (n_neighbors=5)
- - = - Mean Absolute Error
>>> i t neil , datasets, i . g 5))
>>> fizllz zklizi ;:sz sZigtiZ;Simpzrzsirzinpigioziiing UnsuperVIsed Learnmg Estimators >>> from sklearn.metrics import mean absolute error
: = - - >>> y true = [3, -0.5, 2]

>>> from sklearn.metrics import accuracy score N . N —

>>> iris = datasets.load iris() N Principal Component Analysis (PCA) >>> mean_absolute_error (y_true, y_pred)

>>> X, y = iris.datal:, :2], iris.target >>> from sklearn.decomposition import PCA Mean Squared Error

>>> X train, X test, y train, y test=train test split(X,y, random state=33) >>> pca = PCA(n_components=0.95) >>> from sklearn.metrics import mean squared error

>>> scaler = preprocessing.StandardScaler () .fit (X_train) K Means >>> mean_squared error(y test, yiprea) _

>>> X train = scaler.transform(X train) . 2

bs> X test — scaler.transform(X test) >>> from sklearn.cluster import KMeans R? Score ' '

>>> knn = neighbors.KNeighborsCIassiﬁer(nineighbors=5) >>> k_means = KMeans(n_clusters=3, random_state=0) >>> from sklearn.metrics import r2 score

>>> r2 score(y true, y pred)

>>> knn.fit (X_train, y_train)

7 by scortiy sest, e | ModelFitting _________________________JLClustering Metrics
>>> accuracy_score(y_test, y_pred) U
Adjusted Rand Index
Loading The Data

Supervised learning
>>> 1r.fit (X, y)
>>> knn.fit (X_train, y_train)

Fit the model to the data >>> from sklearn.metrics import adjusted rand score
>>> adjusted rand_score(y_true, y pred)

—

Your data needs to be numeric and stored as NumPy arrays or SciPy sparse >>> svc.fit (X_train, y train) Homogeneity)))
g q . . A >>> from sklearn.metrics import homogeneity score
matrices. Other types that are convertible to numeric arrays, such as Pandas Unsupervised Learning . S>> homogeneity score(y true, y pred) -
>>> k means.fit (X_train) Fit the model to the data — - ~
DataFrame, are also acceptable. | _ : . : . V-measure
>>> import numpy as np >>> pea_model = pea.fit_transform(x train) |Fitto data, then transform it >>> from sklearn.metrics import v_measure score
>>> X = np.random.random((10,5)) >>> metrics.v _measure score(y true, y pred)

>>> y = np.array(['M','M','F',"F','M',"F','M','M','F','F','F'])

>>> X[X < 0.7] =0 PredICtIOI‘I Cross-Validation
. . from sklearn.cross validation import cross val score
Supervised Estimators o7 e _ . s_val_
SR . . >>> print (cross val score (knn, X train, train, cv=4))

Training And Test Data >>> 'y pred = svc.predict (np.random.random((2,5)))|Predict labels 227 grint(crossivaliscore(lr, X, g, cv=2)y7

>>> y pred = lr.predict (X_test) Predict labels
>>> X train, X test, y train, y test = train test split ();,’ Unsupervised Estimators Tune Your MOdeI

random_state=0) >>> y pred = k_means.predict (X_test) Predict labels in clustering algos Grid Search

>>> from sklearn.grid_search import GridSearchCV

. >>> params = {"n_neighbors": np.arange(1,3),
PreproceSSIn U The Data "metric": ["euclidean", "cityblock"]}

>>> grid = GridSearchCV (estimator=knn,

Standardization Encoding Categorical Features . param_grid=params)

grid.fit (X train, y train)
>>> from sklearn.preprocessing import StandardScaler >>> from sklearn.preprocessing import LabelEncoder >>> print (grid.best_score)]
>>> scaler = StandardScaler () .fit (X train) >>> enc = LabelEncoder () >>> print (grid.best_estimator_.n_neighbors)

>>> standardized X = scaler.transform(X_ train) - fi £ 5 e e n

>>> standardized X test = scaler.transform(X test) P>> y = enc.fit_transform(y) Randomized Parameter Optlmlzatlon

Normalization Imputing Missing Values D e encay Loport, RapdonizedSearchcy
>>>

= range (1,5),

" " "weights": ["uniform", "distance"]}
>>> from sklearn.preprocessing import Imputer >>> rsearch = RandomizedSearchCV (estimator=knn,

>>> imp = Imputer (missing_values=0, strategy='mean',6 axis=0) param distributions=params,
>>> imp.fit transform(X train) cv=4,
— — n iter=8,

n . random_state=5)
Binarization Generatlng Polynomlal Features >>> rsearch.fit (X train, y train)

>>> print (rsearch.best score)

from sklearn.preprocessing import Normalizer
>>> scaler = Normalizer ().fit (X_train)
>>> normalized X = scaler.transform(X_ train)
>>> normalized X test = scaler.transform(X test)

>>> from sklearn.preprocessing import Binarizer >>> from sklearn.preprocessing import PolynomialFeatures
>>> binarizer = Binarizer (threshold=0.0) .fit (X) >>> poly = PolynomialFeatures(5)

Learn Python for Data Science Interactively

>>> binary X = binarizer.transform(X) >>> poly.fit_transform(X) Datacamp

