
A;B;C
1,5;2;3
4,5;5;NA

A B C
1.5 2 3
4.5 5 NA

write_*(x, file, na = "NA", append, col_names, quote, escape, eol, num_threads, progress)

A|B|C
1|2|3
4|5|NA

A B C
1 2 3
4 5 NA

Data import with the tidyverse : : CHEATSHEET

Try one of the following
packages to import other types of files:

• haven - SPSS, Stata, and SAS files
• DBI - databases
• jsonlite - json
• xml2 - XML
• httr - Web APIs
• rvest - HTML (Web Scraping)
• readr::read_lines() - text data

OTHER TYPES OF DATA

COLUMN TYPES

Column Specification with readr

spec(x)
cols(
age = col_integer(),
edu = col_character(),
earn = col_double()
)

earn is a double (numeric)
edu is a

character

age is an
integer

Hide col spec message
read_*(file, show_col_types = FALSE)

Select columns to import
Use names, position, or selection helpers.
read_*(file, col_select = c(age, earn))

Guess column types
To guess a column type, read_ *() looks at the
first 1000 rows of data. Increase with guess_max.
read_*(file, guess_max = Inf)

USEFUL COLUMN ARGUMENTSColumn specifications define what data type each
column of a file will be imported as. By default
readr will generate a column spec when a file is
read and output a summary.

spec(x) Extract the full column specification for
the given imported data frame.

Each column type has a function and
corresponding string abbreviation.

• col_logical() - "l"
• col_integer() - "i"
• col_double() - "d"
• col_number() - "n"
• col_character() - "c"
• col_factor(levels, ordered = FALSE) - "f"
• col_datetime(format = "") - "T"
• col_date(format = "") - "D"
• col_time(format = "") - "t"
• col_skip() - "-", "_"
• col_guess() - "?"

USEFUL READ ARGUMENTS

A B C
1 2 3

A B C
1 2 3
4 5 NA

x y z
A B C
1 2 3
4 5 NA

A B C
NA 2 3
4 5 NA

1 2 3
4 5 NA

No header
read_csv("file.csv", col_names = FALSE)

Provide header
read_csv("file.csv",
 col_names = c("x", "y", "z"))

Read multiple files into a single table
read_csv(c(“f1.csv”, “f2.csv”, “f3.csv"),
 id = "origin_file")

Skip lines
read_csv("file.csv", skip = 1)

Read a subset of lines
read_csv("file.csv", n_max = 1)

Read values as missing
read_csv("file.csv", na = c("1"))

Specify decimal marks
read_delim("file2.csv", locale =
 locale(decimal_mark = ","))

Read Tabular Data with readr
read_*(file, col_names = TRUE, col_types = NULL, col_select = NULL, id = NULL, locale, n_max = Inf,

skip = 0, na = c("", "NA"), guess_max = min(1000, n_max), show_col_types = TRUE) See ?read_delim

read_delim("file.txt", delim = "|") Read files with any delimiter. If no
delimiter is specified, it will automatically guess.
To make file.txt, run: write_file("A|B|C\n1|2|3\n4|5|NA", file = "file.txt")

read_csv("file.csv") Read a comma delimited file with period
decimal marks.
write_file("A,B,C\n1,2,3\n4,5,NA", file = "file.csv")

read_csv2("file2.csv") Read semicolon delimited files with comma
decimal marks.
write_file("A;B;C\n1,5;2;3\n4,5;5;NA", file = "file2.csv")

read_tsv("file.tsv") Read a tab delimited file. Also read_table().
read_fwf("file.tsv", fwf_widths(c(2, 2, NA))) Read a fixed width file.
write_file("A\tB\tC\n1\t2\t3\n4\t5\tNA\n", file = "file.tsv")

Save Data with readr

write_delim(x, file, delim = " ") Write files with any delimiter.

write_csv(x, file) Write a comma delimited file.

write_csv2(x, file) Write a semicolon delimited file.

write_tsv(x, file) Write a tab delimited file.

A,B,C
1,2,3
4,5,NA

A B C
1 2 3
4 5 NA

One of the first steps of a project is to import
outside data into R. Data is often stored in
tabular formats, like csv files or spreadsheets.

The front page of this sheet shows
how to import and save text files into
R using readr.

The back page shows how to import
spreadsheet data from Excel files
using readxl or Google Sheets using
googlesheets4.

Set a default type
read_csv(
 file,
 col_type = list(.default = col_double())
)
Use column type or string abbreviation
read_csv(
 file,
 col_type = list(x = col_double(), y = "l", z = "_")
)
Use a single string of abbreviations
col types: skip, guess, integer, logical, character
read_csv(
 file,
 col_type = "_?ilc"
)

DEFINE COLUMN SPECIFICATION

A,B,C
1,2,3
4,5,NA

A B C
1 2 3
4 5 NA

A B C
1 2 3
4 5 NA

A B C
1 2 3
4 5 NA

A;B;C
1,5;2;3,0

CC BY SA Posit Software, PBC • info@posit.co • posit.co • readr.tidyverse.org • readxl.tidyverse.org • googlesheets4.tidyverse.org • HTML cheatsheets at pos.it/cheatsheets • readxl 1.4.5 • googlesheets4 1.1.1 • Updated: 2025-08

mailto:info@posit.co
http://posit.co
https://readr.tidyverse.org/
https://readxl.tidyverse.org/
https://googlesheets4.tidyverse.org/
https://pos.it/cheatsheets

Use the range argument of readxl::read_excel() or
googlesheets4::read_sheet() to read a subset of cells from a
sheet.
read_excel(path, range = "Sheet1!B1:D2")
read_sheet(ss, range = "B1:D2")

Also use the range argument with cell specification functions
cell_limits(), cell_rows(), cell_cols(), and anchored().

Column specifications define what data type
each column of a file will be imported as.

Use the col_types argument of read_excel() to
set the column specification.

Guess column types
To guess a column type, read_ excel() looks at
the first 1000 rows of data. Increase with the
guess_max argument.
read_excel(path, guess_max = Inf)

Set all columns to same type, e.g. character
read_excel(path, col_types = "text")

Set each column individually
read_excel(
 path,
 col_types = c("text", "guess", "guess","numeric")
)

with readxl with googlesheets4
READ SHEETSREAD EXCEL FILES

Import Spreadsheets

OTHER USEFUL EXCEL PACKAGES

For functions to write data to Excel files, see:
• openxlsx
• writexl

For working with non-tabular Excel data, see:
• tidyxl

READXL COLUMN SPECIFICATION

read_excel(path, sheet = NULL, range = NULL)
Read a .xls or .xlsx file based on the file extension.
See front page for more read arguments. Also
read_xls() and read_xlsx().
read_excel("excel_file.xlsx")

googlesheets4 also offers ways to modify other
aspects of Sheets (e.g. freeze rows, set column
width, manage (work)sheets). Go to
googlesheets4.tidyverse.org to read more.

For whole-file operations (e.g. renaming, sharing,
placing within a folder), see the tidyverse
package googledrive at
googledrive.tidyverse.org.

READ SHEETS

read_excel(path, sheet =
NULL) Specify which sheet
to read by position or name.
read_excel(path, sheet = 1)
read_excel(path, sheet = "s1")

excel_sheets(path) Get a
vector of sheet names.
excel_sheets("excel_file.xlsx")

To read multiple sheets:
1. Get a vector of sheet

names from the file path.
2. Set the vector names to

be the sheet names.
3. Use purrr::map() and

purrr::list_rbind() to read
multiple files into one
data frame.

CELL SPECIFICATION FOR READXL AND GOOGLESHEETS4

WRITE SHEETS

GOOGLESHEETS4 COLUMN SPECIFICATION
Column specifications define what data type
each column of a file will be imported as.

Use the col_types argument of read_sheet()/
range_read() to set the column specification.

Guess column types
To guess a column type read_sheet()/
range_read() looks at the first 1000 rows of data.
Increase with guess_max.
read_sheet(path, guess_max = Inf)

Set all columns to same type, e.g. character
read_sheet(path, col_types = "c")

Set each column individually
col types: skip, guess, integer, logical, character
read_sheets(ss, col_types = "_?ilc")

FILE LEVEL OPERATIONS

A B C D E

s1 s2 s3

s1 s2 s3

A B C D E

s1 s2

A B C D E

s1 s2

A B C D E

s1 s2 s3

path <- "your_file_path.xlsx"
path |>
 excel_sheets() |>
 set_names() |>
 map(read_excel, path = path) |>
 list_rbind()

x1 x2 x3 x4 x5
x NA z 8 NA
y 7 NA 9 10

A B C D E
1 x1 x2 x3 x4 x5
2 x z 8
3 y 7 9 10

s1

2 3 4
NA y z

A B C D E
1 1 2 3 4 5
2 x y z
3 6 7 9 10

s1

• skip
• guess

• logical
• numeric
• text

• date
• list

• skip - "_" or "-"
• guess - "?"
• logical - "l"
• integer - "i"
• double - "d"
• numeric - "n"

• date - "D"
• datetime - "T"
• character - "c"
• list-column - "L"
• cell - "C" Returns

list of raw cell data.

logical numeric text date list
TRUE 2 hello 1947-01-08 hello
FALSE 3.45 world 1956-10-21 1

l n c D L
TRUE 2 hello 1947-01-08 hello
FALSE 3.45 world 1956-10-21 1

Use list for columns that include multiple data
types. See tidyr and purrr for list-column data. Use list for columns that include multiple data

types. See tidyr and purrr for list-column data.

write_sheet(data, ss =
NULL, sheet = NULL)
Write a data frame into a
new or existing Sheet.
gs4_create(name, ...,
sheets = NULL) Create a
new Sheet with a vector
of names, a data frame,
or a (named) list of data
frames.
sheet_append(ss, data,
sheet = 1) Add rows to
the end of a worksheet.

x1 x2 x3
2 y 5
3 z 6

A B C
1 x1 x2 x3
2 1 x 4
3 2 y 5
4 3 z 6

s1

1 x 4
2 y 5
3 z 6

A B C
1 1 x 4
2 2 y 5
3 3 z 6

s1

read_sheet(ss, sheet = NULL, range = NULL)
Read a sheet from a URL, a Sheet ID, or a dribble
from the googledrive package. See front page for
more read arguments. Same as range_read().

COLUMN TYPES

COLUMN TYPES

URLs are in the form:
https://docs.google.com/spreadsheets/d/
 SPREADSHEET_ID/edit#gid=SHEET_ID

gs4_get(ss) Get spreadsheet meta data.

gs4_find(...) Get data on all spreadsheet files.

sheet_properties(ss) Get a tibble of properties
for each worksheet. Also sheet_names().

SHEETS METADATA

x1 x2 x3 x4 x5
x NA z 8 NA
y 7 NA 9 10

A B C D E
1 x1 x2 x3 x4 x5
2 x z 8
3 y 7 9 10

s1

A B C D
1
2

s1

CC BY SA Posit Software, PBC • info@posit.co • posit.co • readr.tidyverse.org • readxl.tidyverse.org • googlesheets4.tidyverse.org • HTML cheatsheets at pos.it/cheatsheets • readxl 1.4.5 • googlesheets4 1.1.1 • Updated: 2025-08

https://googlesheets4.tidyverse.org/
https://googledrive.tidyverse.org
mailto:info@posit.co
http://posit.co
https://readr.tidyverse.org/
https://readxl.tidyverse.org/
https://googlesheets4.tidyverse.org/
https://pos.it/cheatsheets

Summarize Cases

Use rowwise(.data, …) to group data into individual rows. dplyr
functions will compute results for each row. Also apply functions
to list-columns. See tidyr cheat sheet for list-column workflow.

wwwwwww

Use group_by(.data, …, .add = FALSE, .drop = TRUE) to create a
"grouped" copy of a table grouped by columns in ... dplyr
functions will manipulate each "group" separately and combine
the results.

Apply summary functions to columns to create a new table of
summary statistics. Summary functions take vectors as input and
return one value (see back).

www

www

summarize(.data, …)
Compute table of summaries.
mtcars |> summarize(avg = mean(mpg))

count(.data, …, wt = NULL, sort = FALSE, name =
NULL) Count number of rows in each group defined
by the variables in … Also tally(), add_count(),
add_tally().
mtcars |> count(cyl)

Each observation, or
case, is in its own row

Each variable is in
its own column

&

dplyr functions work with pipes and expect tidy data. In tidy data:

pipes

x |> f(y)
becomes f(x, y) filter(.data, …, .preserve = FALSE) Extract rows

that meet logical criteria.
mtcars |> filter(mpg > 20)

distinct(.data, …, .keep_all = FALSE) Remove
rows with duplicate values.
mtcars |> distinct(gear)

slice(.data, …, .preserve = FALSE) Select rows
by position.
mtcars |> slice(10:15)

slice_sample(.data, …, n, prop, weight_by =
NULL, replace = FALSE) Randomly select rows.
Use n to select a number of rows and prop to
select a fraction of rows.
mtcars |> slice_sample(n = 5, replace = TRUE)

slice_min(.data, order_by, …, n, prop,
with_ties = TRUE) and slice_max() Select rows
with the lowest and highest values.
mtcars |> slice_min(mpg, prop = 0.25)

slice_head(.data, …, n, prop) and slice_tail()
Select the first or last rows.
mtcars |> slice_head(n = 5)

Row functions return a subset of rows as a new table.

See ?base::Logic and ?Comparison for help.

arrange(.data, …, .by_group = FALSE) Order
rows by values of a column or columns (low to
high), use with desc() to order from high to low.
mtcars |> arrange(mpg)
mtcars |> arrange(desc(mpg))

add_row(.data, …, .before = NULL, .after = NULL)
Add one or more rows to a table.
cars |> add_row(speed = 1, dist = 1)

Group Cases

Manipulate Cases
EXTRACT VARIABLES

ADD CASES

ARRANGE CASES

Logical and boolean operators to use with filter()

Column functions return a set of columns as a new vector or table.

contains(match)
ends_with(match)
starts_with(match)

:, e.g., mpg:cyl
!, e.g., !gear
everything()

num_range(prefix, range)
all_of(x)/any_of(x, …, vars)
matches(match)

pull(.data, var = -1, name = NULL, …) Extract
column values as a vector, by name or index.
mtcars |> pull(wt)

select(.data, …) Extract columns as a table.
mtcars |> select(mpg, wt)

relocate(.data, …, .before = NULL, .after = NULL)
Move columns to new position.
mtcars |> relocate(mpg, cyl, .after = last_col())

Manipulate Variables

Use these helpers with select() and across()
e.g. mtcars |> select(mpg:cyl)

Apply vectorized functions to columns. Vectorized functions take
vectors as input and return vectors of the same length as output
(see back).

mutate(.data, …, .keep = "all", .before = NULL,
.after = NULL) Compute new column(s). Also
add_column().
mtcars |> mutate(gpm = 1 / mpg)
mtcars |> mutate(gpm = 1 / mpg, .keep = "none")

rename(.data, …) Rename columns. Use
rename_with() to rename with a function.
mtcars |> rename(miles_per_gallon = mpg)

MAKE NEW VARIABLES

EXTRACT CASES

wwwwww
wwwwww

wwwwww

wwwwww

wwwwww

wwwwww

wwww

wwwww

wwwwww

summary function

vectorized function

Data transformation with dplyr : : CHEATSHEET

A B CA B C

wwww

MANIPULATE MULTIPLE VARIABLES AT ONCE

across(.cols, .funs, …, .names = NULL) Summarize
or mutate multiple columns in the same way.
df |> summarize(across(everything(), mean))

c_across(.cols) Compute across columns in
row-wise data.
df |>
 rowwise() |>
 mutate(x_total = sum(c_across(1:2)))

wwwwww

ungroup(x, …) Returns ungrouped copy of table.
g_mtcars <- mtcars |> group_by(cyl)
ungroup(g_mtcars)

wwwwwwwww

www
mtcars |>
 group_by(cyl) |>
 summarize(avg = mean(mpg))

starwars |>
 rowwise() |>
 mutate(film_count = length(films))

www== < <= is.na() %in% | xor()
!= > >= !is.na() ! &

df <- tibble(x_1 = c(1, 2), x_2 = c(3, 4), y = c(4, 5))

CC BY SA Posit Software, PBC • info@posit.co • posit.co • Learn more at dplyr.tidyverse.org • HTML cheatsheets at pos.it/cheatsheets • dplyr 1.1.4 • Updated: 2025-08

mtcars |>
 summarize(
 avg = mean(mpg), .by = cyl
)

Alternate grouping
syntax with .by as an
argument:

mailto:info@posit.co
http://posit.co
https://dplyr.tidyverse.org/
https://pos.it/cheatsheets

OFFSET
dplyr::lag() - offset elements by 1
dplyr::lead() - offset elements by -1

CUMULATIVE AGGREGATE
dplyr::cumall() - cumulative all()
dplyr::cumany() - cumulative any()

cummax() - cumulative max()
dplyr::cummean() - cumulative mean()

cummin() - cumulative min()
cumprod() - cumulative prod()
cumsum() - cumulative sum()

RANKING
dplyr::cume_dist() - proportion of all values <=
dplyr::dense_rank() - rank w ties = min, no gaps
dplyr::min_rank() - rank with ties = min
dplyr::ntile() - bins into n bins
dplyr::percent_rank() - min_rank scaled to [0,1]
dplyr::row_number() - rank with ties = "first"

MATH
+, - , *, /, ^, %/%, %% - arithmetic ops
log(), log2(), log10() - logs
<, <=, >, >=, !=, == - logical comparisons

dplyr::between() - x >= left & x <= right
dplyr::near() - safe == for floating point numbers

MISCELLANEOUS
dplyr::case_when() - multi-case if_else()
 starwars |>
 mutate(type = case_when(
 height > 200 | mass > 200 ~ "large",
 species == "Droid" ~ "robot",
 TRUE ~ "other")
)
dplyr::coalesce() - first non-NA values by
 element across a set of vectors
dplyr::if_else() - element-wise if() + else()
dplyr::na_if() - replace specific values with NA

pmax() - element-wise max()
pmin() - element-wise min()

mutate() applies vectorized functions to
columns to create new columns. Vectorized
functions take vectors as input and return
vectors of the same length as output.

Vectorized Functions
TO USE WITH MUTATE ()

vectorized function

Summary Functions
TO USE WITH SUMMARIZE ()

summarize() applies summary functions to
columns to create a new table. Summary
functions take vectors as input and return single
values as output.

COUNT
dplyr::n() - number of values/rows
dplyr::n_distinct() - # of uniques

sum(!is.na()) - # of non-NAs

POSITION
mean() - mean, also mean(!is.na())
median() - median

LOGICAL
mean() - proportion of TRUEs
sum() - # of TRUEs

ORDER
dplyr::first() - first value
dplyr::last() - last value
dplyr::nth() - value in nth location of vector

RANK
quantile() - nth quantile
min() - minimum value
max() - maximum value

SPREAD
IQR() - Inter-Quartile Range
mad() - median absolute deviation
sd() - standard deviation
var() - variance

Row Names
Tidy data does not use rownames, which store a
variable outside of the columns. To work with the
rownames, first move them into a column.

tibble::rownames_to_column()
Move row names into col.
a <- mtcars |>
 rownames_to_column(var = "C")

tibble::column_to_rownames()
Move col into row names.
a |> column_to_rownames(var = "C")

summary function

Also tibble::has_rownames() and
tibble::remove_rownames().

Combine Tables
COMBINE VARIABLES COMBINE CASES

bind_cols(…, .name_repair) Returns tables
placed side by side as a single table. Column
lengths must be equal. Columns will NOT be
matched by id (to do that look at Relational Data
below), so be sure to check that both tables are
ordered the way you want before binding.

left_join(x, y, by = NULL, copy = FALSE,
suffix = c(".x", ".y"), …, keep = FALSE,
na_matches = "na") Join matching
values from y to x.

right_join(x, y, by = NULL, copy = FALSE,
suffix = c(".x", ".y"), …, keep = FALSE,
na_matches = "na") Join matching
values from x to y.

inner_join(x, y, by = NULL, copy = FALSE,
suffix = c(".x", ".y"), …, keep = FALSE,
na_matches = "na") Join data. Retain
only rows with matches.

full_join(x, y, by = NULL, copy = FALSE,
suffix = c(".x", ".y"), …, keep = FALSE,
na_matches = "na") Join data. Retain all
values, all rows.

Use by = c("col1", "col2", …) to
specify one or more common
columns to match on.
left_join(x, y, by = "A")

Use a named vector, by = c("col1" =
"col2"), to match on columns that
have different names in each table.
left_join(x, y, by = c("C" = "D"))

Use suffix to specify the suffix to
give to unmatched columns that
have the same name in both tables.
left_join(x, y, by = c("C" = "D"),
suffix = c("1", "2"))

Use a "Filtering Join" to filter one table against
the rows of another.

semi_join(x, y, by = NULL, copy = FALSE,
…, na_matches = "na") Return rows of x
that have a match in y. Use to see what
will be included in a join.

anti_join(x, y, by = NULL, copy = FALSE,
…, na_matches = "na") Return rows of x
that do not have a match in y. Use to see
what will not be included in a join.

A B
1 a t
2 b u
3 c v

C A B
1 a t
2 b u
3 c v

A B
t 1 a
u 2 b
v 3 c

A B C
1 a t
2 b u
3 c v

x y
A B C
a t 1
b u 2
c v 3

E F G
a t 3
b u 2
d w 1

+ =
A B C
a t 1
b u 2
c v 3

E F G
a t 3
b u 2
d w 1

A B C D
a t 1 3
b u 2 2
c v 3 NA

A B C D
a t 1 3
b u 2 2
d w NA 1

A B C D
a t 1 3
b u 2 2

A B C D
a t 1 3
b u 2 2
c v 3 NA

d w NA 1

A B.x C B.y D
a t 1 t 3
b u 2 u 2
c v 3 NA NA

A.x B.x C A.y B.y
a t 1 d w
b u 2 b u
c v 3 a t

A1 B1 C A2 B2
a t 1 d w
b u 2 b u
c v 3 a t

x

y

A B C
a t 1
b u 2

A B C
c v 3
d w 4+

DF A B C
x a t 1
x b u 2
y c v 3
y d w 4

Use setequal() to test whether two data sets
contain the exact same rows (in any order).

intersect(x, y, …)
Rows that appear in both x and y.

setdiff(x, y, …)
Rows that appear in x but not y.

union(x, y, …)
Rows that appear in x or y,
duplicates removed). union_all()
retains duplicates.

A B C
c v 3

A B C
a t 1
b u 2
c v 3
d w 4

A B C
a t 1
b u 2

x y
A B C
a t 1
b u 2
c v 3

A B D
a t 3
b u 2
d w 1

+ =

A B C
c v 3

A B C
a t 1
b u 2

Use a "Mutating Join" to join one table to
columns from another, matching values with the
rows that they correspond to. Each join retains a
different combination of values from the tables.

RELATIONAL DATA

bind_rows(…, .id = NULL)
Returns tables one on top of the
other as a single table. Set .id to
a column name to add a column
of the original table names (as
pictured).

SET OPERATIONSCOLUMN MATCHING FOR JOINS

Use a "Nest Join" to inner join one table to
another into a nested data frame.

A B C y
a t 1 <tibble [1x2]>
b u 2 <tibble [1x2]>
c v 3 <tibble [1x2]>

nest_join(x, y, by = NULL, copy =
FALSE, keep = FALSE, name =
NULL, …) Join data, nesting
matches from y in a single new
data frame column.

CC BY SA Posit Software, PBC • info@posit.co • posit.co • Learn more at dplyr.tidyverse.org • HTML cheatsheets at pos.it/cheatsheets • dplyr 1.1.4 • Updated: 2025-08

mailto:info@posit.co
http://posit.co
https://dplyr.tidyverse.org/
https://pos.it/cheatsheets

appl<e>
banana
p<e>ar

Join and Split
str_c(..., sep = "", collapse = NULL) Join
multiple strings into a single string.
str_c(letters, LETTERS)

str_flatten(string, collapse = "") Combines
into a single string, separated by collapse.
str_flatten(fruit, ", ")

str_dup(string, times) Repeat strings times
times. Also str_unique() to remove duplicates.
str_dup(fruit, times = 2)

str_split_fixed(string, pattern, n) Split a
vector of strings into a matrix of substrings
(splitting at occurrences of a pattern match).
Also str_split() to return a list of substrings
and str_split_i() to return the ith substring.
str_split_fixed(sentences, " ", n=3)

str_glue(…, .sep = "", .envir = parent.frame())
Create a string from strings and {expressions}
to evaluate. str_glue("Pi is {pi}")

str_glue_data(.x, ..., .sep = "", .envir =
parent.frame(), .na = "NA") Use a data frame,
list, or environment to create a string from
strings and {expressions} to evaluate.
str_glue_data(mtcars, "{rownames(mtcars)} has
{hp} hp")

{xx} {yy}

A STRING

a string

Mutate Strings
str_sub() <- value. Replace substrings by
identifying the substrings with str_sub() and
assigning into the results.
str_sub(fruit, 1, 3) <- "str"

str_replace(string, pattern, replacement)
Replace the first matched pattern in each
string. Also str_remove().
str_replace(fruit, "p", "-")

str_replace_all(string, pattern, replacement)
Replace all matched patterns in each string.
Also str_remove_all().
str_replace_all(fruit, "p", "-")

str_to_lower(string, locale = "en")1
Convert strings to lower case.
str_to_lower(sentences)

str_to_upper(string, locale = "en")1
Convert strings to upper case.
str_to_upper(sentences)

str_to_title(string, locale = "en")1 Convert
strings to title case. Also str_to_sentence().
str_to_title(sentences)

a string

A String

str_conv(string, encoding) Override the
encoding of a string. str_conv(fruit,"ISO-8859-1")

str_view(string, pattern, match = NA)
View HTML rendering of all regex matches.
str_view(sentences, "[aeiou]")

str_equal(x, y, locale = "en", ignore_case =
FALSE, ...)1 Determine if two strings are
equivalent. str_equal(c("a", "b"), c("a", "c"))

str_wrap(string, width = 80, indent = 0,
exdent = 0) Wrap strings into nicely formatted
paragraphs. str_wrap(sentences, 20)

String manipulation with stringr : : CHEATSHEET
Detect Matches

str_detect(string, pattern, negate = FALSE)
Detect the presence of a pattern match in a
string. Also str_like(). str_detect(fruit, "a")

str_starts(string, pattern, negate = FALSE)
Detect the presence of a pattern match at
the beginning of a string. Also str_ends().
str_starts(fruit, "a")

str_which(string, pattern, negate = FALSE)
Find the indexes of strings that contain
a pattern match. str_which(fruit, "a")

str_locate(string, pattern) Locate the
positions of pattern matches in a string.
Also str_locate_all(). str_locate(fruit, "a")

str_count(string, pattern) Count the number
of matches in a string. str_count(fruit, "a")

Manage Lengths
TRUE
TRUE
FALSE
TRUE

1
2
4

0
3
1
2

start end

2 4
4 7

NA NA
3 4

str_length(string) The width of strings (i.e.
number of code points, which generally equals
the number of characters). str_length(fruit)

str_pad(string, width, side = c("left", "right",
"both"), pad = " ") Pad strings to constant
width. str_pad(fruit, 17)

str_trunc(string, width, side = c("right", "left",
"center"), ellipsis = "...") Truncate the width
of strings, replacing content with ellipsis.
str_trunc(sentences, 6)

str_trim(string, side = c("both", "left", "right"))
Trim whitespace from the start and/or end of
a string. str_trim(str_pad(fruit, 17))

str_squish(string) Trim whitespace from each
end and collapse multiple spaces into single
spaces. str_squish(str_pad(fruit, 17, "both"))

4
6
2
3

Helpers

str_order(x, decreasing = FALSE, na_last =
TRUE, locale = "en", numeric = FALSE, ...)1
Return the vector of indexes that sorts a
character vector. fruit[str_order(fruit)]

str_sort(x, decreasing = FALSE, na_last =
TRUE, locale = "en", numeric = FALSE, ...)1
Sort a character vector. str_sort(fruit)

4
1
3
2

Order Strings

The stringr package provides a set of internally consistent tools for working with character strings, i.e. sequences of characters surrounded by quotation marks.

Subset Strings
str_sub(string, start = 1L, end = -1L) Extract
substrings from a character vector.
str_sub(fruit, 1, 3); str_sub(fruit, -2)

str_subset(string, pattern, negate = FALSE)
Return only the strings that contain a pattern
match. str_subset(fruit, "p")

str_extract(string, pattern) Return the first
pattern match found in each string, as a vector.
Also str_extract_all() to return every pattern
match. str_extract(fruit, "[aeiou]")

str_match(string, pattern) Return the
first pattern match found in each string, as
a matrix with a column for each () group in
pattern. Also str_match_all().
str_match(sentences, "(a|the) ([^ +])")

NA NA

NA

1 See bit.ly/ISO639-1 for a complete list of locales.

TRUE
TRUE
FALSE
TRUE

a string

A STRING TRUE
TRUE
FALSE
TRUE

This is a long sentence.

This is a long
sentence.

CC BY SA Posit Software, PBC • info@posit.co • posit.co • Learn more at stringr.tidyverse.org • Diagrams from @LVaudor on Twitter • HTML cheatsheets at pos.it/cheatsheets • stringr 1.5.1 • Updated: 2025-08

http://bit.ly/ISO639-1
mailto:info@posit.co
http://posit.co
http://stringr.tidyverse.org/
https://twitter.com/LVaudor
https://pos.it/cheatsheets

regexp matches example

a? zero or one quant("a?") .a.aa.aaa
a* zero or more quant("a*") .a.aa.aaa
a+ one or more quant("a+") .a.aa.aaa
a{n} exactly n quant("a{2}") .a.aa.aaa
a{n, } n or more quant("a{2,}") .a.aa.aaa
a{n, m} between n and m quant("a{2,4}") .a.aa.aaa

string
(type this)

regexp
(to mean this)

matches
(which matches this)

example
(the result is the same as ref("abba"))

\\1 \1 (etc.) first () group, etc. ref("(a)(b)\\2\\1") abbaab

regexp matches example

^a start of string anchor("^a") aaa
a$ end of string anchor("a$") aaa

regexp matches example

ab|d or alt("ab|d") abcde
[abe] one of alt("[abe]") abcde
[^abe] anything but alt("[^abe]") abcde
[a-c] range alt("[a-c]") abcde

regex(pattern, ignore_case = FALSE, multiline =
FALSE, comments = FALSE, dotall = FALSE, ...)
Modifies a regex to ignore cases, match end of
lines as well of end of strings, allow R comments
within regex's , and/or to have . match everything
including \n.
str_detect("I", regex("i", TRUE))

fixed() Matches raw bytes but will miss some
characters that can be represented in multiple
ways (fast). str_detect("\u0130", fixed("i"))

coll() Matches raw bytes and will use locale
specific collation rules to recognize characters
that can be represented in multiple ways (slow).
str_detect("\u0130", coll("i", TRUE, locale = "tr"))

boundary() Matches boundaries between
characters, line_breaks, sentences, or words.
str_split(sentences, boundary("word"))

Special Character Represents
\\ \
\" "
\n new line

Need to Know Regular Expressions -
Pattern arguments in stringr are interpreted as
regular expressions after any special characters
have been parsed.

In R, you write regular expressions as strings,
sequences of characters surrounded by quotes
("") or single quotes('').

Some characters cannot be represented directly
in an R string . These must be represented as
special characters, sequences of characters that
have a specific meaning., e.g.

Run ?"'" to see a complete list

Because of this, whenever a \ appears in a regular
expression, you must write it as \\ in the string
that represents the regular expression.

Use writeLines() to see how R views your string
after all special characters have been parsed.

writeLines("\\.")
\.

writeLines("\\ is a backslash")
\ is a backslash

MATCH CHARACTERS

quant <- function(rx) str_view(".a.aa.aaa", rx)QUANTIFIERS

anchor <- function(rx) str_view("aaa", rx)ANCHORS

GROUPS
Use parentheses to set precedent (order of evaluation) and create groups

Use an escaped number to refer to and duplicate parentheses groups that occur
earlier in a pattern. Refer to each group by its order of appearance

ref <- function(rx) str_view("abbaab", rx)

alt <- function(rx) str_view("abcde", rx)ALTERNATES

look <- function(rx) str_view("bacad", rx)LOOK AROUNDS

INTERPRETATION

Patterns in stringr are interpreted as regexs. To
change this default, wrap the pattern in one of:

regexp matches example
(ab|d)e sets precedence alt("(ab|d)e") abcde

see <- function(rx) str_view("abc ABC 123\t.!?\\(){}\n", rx)

Regular expressions, or regexps, are a concise language for
describing patterns in strings.

a b c d e f

g h i j k l

m n o p q r

s t u v w x

y z

[:lower:]

A B C D E F

G H I J K L

M N O P Q R

S T U V W X

Y Z

[:upper:]

[:alpha:]

0 1 2 3 4 5 6 7 8 9

[:digit:]

[:alnum:]

[:punct:]

. , : ; ? ! / * @ #

- _ " ' [] { } ()

[:graph:]

[:blank:]

[:space:]

space
tab

1 Many base R functions require classes to be wrapped in a second set of [], e.g. [[:digit:]]

string
(type this)

regexp
(to mean this)

matches
(which matches this)

example

a (etc.) a (etc.) see("a") abc ABC 123 .!?\(){}
\\. \. . see("\\.") abc ABC 123 .!?\(){}
\\! \! ! see("\\!") abc ABC 123 .!?\(){}
\\? \? ? see("\\?") abc ABC 123 .!?\(){}
\\\\ \\ \ see("\\\\") abc ABC 123 .!?\(){}
\\(\((see("\\(") abc ABC 123 .!?\(){}
\\) \)) see("\\)") abc ABC 123 .!?\(){}
\\{ \{ { see("\\{") abc ABC 123 .!?\(){}
\\} \} } see("\\}") abc ABC 123 .!?\(){}
\\n \n new line (return) see("\\n") abc ABC 123 .!?\(){}
\\t \t tab see("\\t") abc ABC 123 .!?\(){}
\\s \s any whitespace (\S for non-whitespaces) see("\\s") abc ABC 123 .!?\(){}
\\d \d any digit (\D for non-digits) see("\\d") abc ABC 123 .!?\(){}
\\w \w any word character (\W for non-word chars) see("\\w") abc ABC 123 .!?\(){}
\\b \b word boundaries see("\\b") abc ABC 123 .!?\(){}

[:digit:] digits see("[:digit:]") abc ABC 123 .!?\(){}
[:alpha:] letters see("[:alpha:]") abc ABC 123 .!?\(){}
[:lower:] lowercase letters see("[:lower:]") abc ABC 123 .!?\(){}
[:upper:] uppercase letters see("[:upper:]") abc ABC 123 .!?\(){}
[:alnum:] letters and numbers see("[:alnum:]") abc ABC 123 .!?\(){}
[:punct:] punctuation see("[:punct:]") abc ABC 123 .!?\(){}
[:graph:] letters, numbers, and punctuation see("[:graph:]") abc ABC 123 .!?\(){}
[:space:] space characters (i.e. \s) see("[:space:]") abc ABC 123 .!?\(){}
[:blank:] space and tab (but not new line) see("[:blank:]") abc ABC 123 .!?\(){}
. every character except a new line see(".") abc ABC 123 .!?\(){}

1
1
1
1
1
1
1
1
1

2 ...1 n
n ... m

1 2 ... n

regexp matches example

a(?=c) followed by look("a(?=c)") bacad
a(?!c) not followed by look("a(?!c)") bacad
(?<=b)a preceded by look("(?<=b)a") bacad
(?<!b)a not preceded by look("(?<!b)a") bacad

new line

| ` = + ^

~ < > $

[:symbol:]

.

CC BY SA Posit Software, PBC • info@posit.co • posit.co • Learn more at stringr.tidyverse.org • Diagrams from @LVaudor on Twitter • HTML cheatsheets at pos.it/cheatsheets • stringr 1.5.1 • Updated: 2025-08

mailto:info@posit.co
http://posit.co
http://stringr.tidyverse.org/
https://twitter.com/LVaudor
https://pos.it/cheatsheets

Data tidying with tidyr : : CHEATSHEET

&

Tidy data is a way to organize tabular data in a
consistent data structure across packages.
A table is tidy if:

Each variable is in
its own column

Each observation, or
case, is in its own row

A B C A B C

A B C

Access variables
as vectors

Preserve cases in
vectorized operations

*A B C

Tibbles
Tibbles are a table format provided
by the tibble package. They inherit the
data frame class, but have improved behaviors:
• Subset a new tibble with], a vector with [[and $.
• No partial matching when subsetting columns.
• Display concise views of the data on one screen.

A tibble: 3 × 2
 x y
 <int> <chr>
1 1 a
2 2 b
3 3 c

Both make
this tibble

CONSTRUCT A TIBBLE

as_tibble(x, …) Convert a data frame to a tibble.

enframe(x, name = "name", value = "value")
Convert a named vector to a tibble. Also deframe().

is_tibble(x) Test whether x is a tibble.

AN ENHANCED DATA FRAME

options(tibble.print_max = n, tibble.print_min = m,
tibble.width = Inf) Control default display settings.

View() or glimpse() View the entire data set.

tibble(…) Construct by columns.
tibble(x = 1:3, y = c("a", "b", "c"))

tribble(…) Construct by rows.
tribble(~x, ~y,
 1, "a",
 2, "b",
 3, "c")

Reshape Data - Pivot data to reorganize values into a new layout.

Handle Missing Values

x1 x2
A 1
B NA
C NA
D 3
E NA

x1 x2
A 1
D 3

x

x1 x2
A 1
B NA
C NA
D 3
E NA

x1 x2
A 1
B 1
C 1
D 3
E 3

x

x1 x2
A 1
B NA
C NA
D 3
E NA

x1 x2
A 1
B 2
C 2
D 3
E 2

x

drop_na(data, …) Drop
rows containing NA’s in …
columns.
drop_na(x, x2)

fill(data, …, .direction =
"down") Fill in NA’s in …
columns using the next or
previous value.
fill(x, x2)

replace_na(data, replace)
Specify a value to replace
NA in selected columns.
replace_na(x, list(x2 = 2))

Expand
Tables

expand(data, …) Create a
new tibble with all possible
combinations of the values
of the variables listed in …
Drop other variables.
expand(mtcars, cyl, gear,
carb)

complete(data, …, fill =
list()) Add missing possible
combinations of values of
variables listed in … Fill
remaining variables with NA.
complete(mtcars, cyl, gear,
carb)

x1 x2 x3
A 1 3
B 1 4
B 2 3

x1 x2
A 1
A 2
B 1
B 2

x

pivot_longer(data, cols, names_to = "name",
values_to = "value", values_drop_na = FALSE)

"Lengthen" data by collapsing several columns
into two. Column names move to a new
names_to column and values to a new values_to
column.

pivot_longer(table4a, cols = 2:3, names_to ="year",
 values_to = "cases")

pivot_wider(data, names_from = "name",
values_from = "value")

The inverse of pivot_longer(). "Widen" data by
expanding two columns into several. One column
provides the new column names, the other the
values.

pivot_wider(table2, names_from = type,
 values_from = count)

- Use these functions to split or combine cells into individual, isolated values.Split Cells
unite(data, col, …, sep = "_", remove = TRUE,
na.rm = FALSE) Collapse cells across several
columns into a single column.

unite(table5, century, year, col = "year", sep = "")

separate_wider_delim(data, cols, delim, ...,
names = NULL, names_sep = NULL, names_repair =
"check unique", too_few, too_many, cols_remove =
TRUE) Separate each cell in a column into several
columns. Also separate_wider_regex() and
separate_wider_position().

separate(table3, rate, sep = "/",
 into = c("cases", "pop"))

separate_longer_delim(data, cols, delim, ..,
width, keep_eampty) Separate each cell in a
column into several rows.

separate_longer_delim(table3, rate, sep = "/")

x1 x2 x3
A 1 3
A 2 NA
B 1 4
B 2 3

x

Create new combinations of variables or identify
implicit missing values (combinations of
variables not present in the data).

Drop or replace explicit missing values (NA).

table4a
country 1999 2000

A 0.7K 2K
B 37K 80K
C 212K 213K

country year cases
A 1999 0.7K
B 1999 37K
C 1999 212K
A 2000 2K
B 2000 80K
C 2000 213K

country year cases pop
A 1999 0.7K 19M
A 2000 2K 20M
B 1999 37K 172M
B 2000 80K 174M
C 1999 212K 1T
C 2000 213K 1T

table2
country year type count

A 1999 cases 0.7K
A 1999 pop 19M
A 2000 cases 2K
A 2000 pop 20M
B 1999 cases 37K
B 1999 pop 172M
B 2000 cases 80K
B 2000 pop 174M
C 1999 cases 212K
C 1999 pop 1T
C 2000 cases 213K
C 2000 pop 1T

country year rate
A 1999 0.7K/19M0
A 2000 0.2K/20M0
B 1999 .37K/172M
B 2000 .80K/174M

country year cases pop
A 1999 0.7K 19M
A 2000 2K 20M
B 1999 37K 172
B 2000 80K 174

table3

country century year
A 19 99
A 20 00
B 19 99
B 20 00

country year
A 1999
A 2000
B 1999
B 2000

table5

country year rate
A 1999 0.7K/19M0
A 2000 0.2K/20M0
B 1999 .37K/172M
B 2000 .80K/174M

country year rate
A 1999 0.7K
A 1999 19M
A 2000 2K
A 2000 20M
B 1999 37K
B 1999 172M
B 2000 80K
B 2000 174M

table3

x1 x2 x3
A 1 3
B 1 4
B 2 3

CC BY SA Posit Software, PBC • info@posit.co • posit.co • Learn more at tidyr.tidyverse.org • HTML cheatsheets at pos.it/cheatsheets • tidyr 1.3.1 • tibble 3.3.0 • Updated: 2025–08

mailto:info@posit.co
http://posit.co
http://tidyr.tidyverse.org
https://pos.it/cheatsheets

tibble::tribble(…) Makes list-columns when needed.
tribble(~max, ~seq,
 3, 1:3,
 4, 1:4,
 5, 1:5)
tibble::tibble(…) Saves list input as list-columns.
tibble(max = c(3, 4, 5), seq = list(1:3, 1:4, 1:5))
tibble::enframe(x, name="name", value="value")
Converts multi-level list to a tibble with list-cols.
enframe(list('3'=1:3, '4'=1:4, '5'=1:5), 'max', 'seq')

CC BY SA Posit Software, PBC • info@posit.co • posit.co • Learn more at tidyr.tidyverse.org • HTML cheatsheets at pos.it/cheatsheets • tidyr 1.3.1 • tibble 3.3.0 • Updated: 2025–08

nest(data, …) Moves groups of cells into a list-column of a data
frame. Use alone or with dplyr::group_by():

1. Group the data frame with group_by() and use nest() to move
the groups into a list-column.
n_storms <- storms |>
 group_by(name) |>
 nest()

2. Use nest(new_col = c(x, y)) to specify the columns to group
using dplyr::select() syntax.
n_storms <- storms |>
 nest(data = c(year:long))

Nested Data

CREATE NESTED DATA

nested data frame

"cell" contents

name data
Amy <tibble [50x3]>
Bob <tibble [50x3]>
Zeta <tibble [50x3]>

name yr lat long

Amy 1975 27.5 -79.0
Amy 1975 28.5 -79.0
Amy 1975 29.5 -79.0
Bob 1979 22.0 -96.0
Bob 1979 22.5 -95.3
Bob 1979 23.0 -94.6
Zeta 2005 23.9 -35.6
Zeta 2005 24.2 -36.1
Zeta 2005 24.7 -36.6

name yr lat long

Amy 1975 27.5 -79.0
Amy 1975 28.5 -79.0
Amy 1975 29.5 -79.0
Bob 1979 22.0 -96.0
Bob 1979 22.5 -95.3
Bob 1979 23.0 -94.6
Zeta 2005 23.9 -35.6
Zeta 2005 24.2 -36.1
Zeta 2005 24.7 -36.6

yr lat long
1975 27.5 -79.0
1975 28.5 -79.0
1975 29.5 -79.0

yr lat long
1979 22.0 -96.0
1979 22.5 -95.3
1979 23.0 -94.6

yr lat long
2005 23.9 -35.6
2005 24.2 -36.1
2005 24.7 -36.6

Index list-columns with [[]]. n_storms$data[[1]]

TRANSFORM NESTED DATA
A vectorized function takes a vector, transforms each element in
parallel, and returns a vector of the same length. By themselves
vectorized functions cannot work with lists, such as list-columns.

dplyr::rowwise(.data, …) Group data so that each row is one
group, and within the groups, elements of list-columns appear
directly (accessed with [[), not as lists of length one. When you
use rowwise(), dplyr functions will seem to apply functions to
list-columns in a vectorized fashion.

max seq
3 <int [3]>
4 <int [4]>
5 <int [5]>

n_storms |>
 rowwise() |>
 mutate(n = list(dim(data)))

starwars |>
 rowwise() |>
 mutate(transport = list(append(vehicles, starships)))

n_storms |>
 rowwise() |>
 mutate(n = nrow(data))

Apply a function to a list-column and create a new list-column.

Apply a function to a list-column and create a regular column.

Collapse multiple list-columns into a single list-column.

See purrr package for more list functions.

data
<tibble [50x4]>
<tibble [50x4]>
<tibble [50x4]>

fun(, …)
fun(, …)
fun(, …)

data
<tibble [50x4]>
<tibble [50x4]>
<tibble [50x4]>

result
result 1
result 2
result 3

data
<tibble [50x4]>
<tibble [50x4]>
<tibble [50x4]>

append() returns a list for each
row, so col type must be list

CREATE TIBBLES WITH LIST-COLUMNS

dplyr::mutate(), transmute(), and summarise() will output
list-columns if they return a list.
mtcars |>
 group_by(cyl) |>
 summarise(q = list(quantile(mpg)))

OUTPUT LIST-COLUMNS FROM OTHER FUNCTIONS

A nested data frame stores individual tables as a list-column of data frames within a larger organizing data frame. List-columns can also be lists of vectors or lists of varying data types.
Use a nested data frame to:
• Preserve relationships between observations and subsets of data. Preserve the type of the variables being nested (factors and datetimes aren't coerced to character).
• Manipulate many sub-tables at once with purrr functions like map(), map2(), or pmap() or with dplyr rowwise() grouping.

dim() returns two
values per row

unnest(data, cols, ..., keep_empty = FALSE) Flatten nested columns
back to regular columns. The inverse of nest().
n_storms |> unnest(data)

unnest_longer(data, col, values_to = NULL, indices_to = NULL)
Turn each element of a list-column into a row.

RESHAPE NESTED DATA

name films
Luke <chr [5]>

C-3PO <chr [6]>
R2-D2 <chr[7]>

name films
Luke The Empire Strik…
Luke Revenge of the S…
Luke Return of the Jed…

C-3PO The Empire Strik…
C-3PO Attack of the Cl…
C-3PO The Phantom M…
R2-D2 The Empire Strik…
R2-D2 Attack of the Cl…
R2-D2 The Phantom M…

unnest_wider(data, col) Turn each element of a list-column into a
regular column.

hoist(.data, .col, ..., .remove = TRUE) Selectively pull list components
out into their own top-level columns. Uses purrr::pluck() syntax for
selecting from lists.

name films
Luke <chr [5]>

C-3PO <chr [6]>
R2-D2 <chr[7]>

name films_1 films_2 films_3
Luke The Empire... Revenge of... Return of...

C-3PO The Empire... Attack of... The Phantom...
R2-D2 The Empire... Attack of... The Phantom...

name films
Luke <chr [5]>

C-3PO <chr [6]>
R2-D2 <chr[7]>

name first_film second_film films
Luke The Empire… Revenge of… <chr [3]>

C-3PO The Empire… Attack of… <chr [4]>
R2-D2 The Empire… Attack of… <chr [5]>

starwars |>
 select(name, films) |>
 unnest_longer(films)

starwars |>
 select(name, films) |>
 unnest_wider(films, names_sep = “_")

starwars |>
 select(name, films) |>
 hoist(films, first_film = 1, second_film = 2)

starwars |>
 rowwise() |>
 mutate(n_transports = length(c(vehicles, starships)))

Apply a function to multiple list-columns.

wrap with list to tell mutate
to create a list-column

length() returns one
integer per row

nrow() returns one
integer per row

mailto:info@posit.co
http://posit.co
http://tidyr.tidyverse.org
https://pos.it/cheatsheets

maps
Draw the appropriate geometric object depending on the
simple features present in the data. aes() arguments:
map_id, alpha, color, fill, linetype, linewidth.

Data visualization with ggplot2 : : CHEATSHEET
ggplot2 is based on the grammar of graphics, the idea
that you can build every graph from the same
components: a data set, a coordinate system,
and geoms—visual marks that represent data points.

Basics
GRAPHICAL PRIMITIVES

a + geom_blank() and a + expand_limits()
Ensure limits include values across all plots.

b + geom_curve(aes(yend = lat + 1,
xend = long + 1), curvature = 1) - x, xend, y, yend,
alpha, angle, color, curvature, linetype, size

a + geom_path(lineend = "butt",
linejoin = "round", linemitre = 1)
x, y, alpha, color, group, linetype, size

a + geom_polygon(aes(alpha = 50)) - x, y, alpha,
color, fill, group, subgroup, linetype, size

b + geom_rect(aes(xmin = long, ymin = lat,
xmax = long + 1, ymax = lat + 1)) - xmax, xmin,
ymax, ymin, alpha, color, fill, linetype, size

a + geom_ribbon(aes(ymin = unemploy - 900,
ymax = unemploy + 900)) - x, ymax, ymin,
alpha, color, fill, group, linetype, size

+ =

To display values, map variables in the data to visual
properties of the geom (aesthetics) like size, color, and x
and y locations.

+ =

data geom
x = F · y = A

coordinate
system

plot

data geom
x = F · y = A
color = F
size = A

coordinate
system

plot

Complete the template below to build a graph.
required

ggplot(data = mpg, aes(x = cty, y = hwy)) Begins a plot
that you finish by adding layers to. Add one geom
function per layer.

last_plot() Returns the last plot.

ggsave("plot.png", width = 5, height = 5) Saves last plot
as 5’ x 5’ file named "plot.png" in working directory.
Matches file type to file extension.

F M A

F M A

LINE SEGMENTS
common aesthetics: x, y, alpha, color, linetype, size

b + geom_abline(aes(intercept = 0, slope = 1))
b + geom_hline(aes(yintercept = lat))
b + geom_vline(aes(xintercept = long))

b + geom_segment(aes(yend = lat + 1, xend = long + 1))
b + geom_spoke(aes(angle = 1:1155, radius = 1))

a <- ggplot(economics, aes(date, unemploy))
b <- ggplot(seals, aes(x = long, y = lat))

ONE VARIABLE continuous
c <- ggplot(mpg, aes(hwy)); c2 <- ggplot(mpg)

c + geom_area(stat = "bin")
x, y, alpha, color, fill, linetype, size

c + geom_density(kernel = "gaussian")
x, y, alpha, color, fill, group, linetype, size, weight

c + geom_dotplot()
x, y, alpha, color, fill

c + geom_freqpoly()
x, y, alpha, color, group, linetype, size

c + geom_histogram(binwidth = 5)
x, y, alpha, color, fill, linetype, size, weight

c2 + geom_qq(aes(sample = hwy))
x, y, alpha, color, fill, linetype, size, weight

discrete
d <- ggplot(mpg, aes(fl))

d + geom_bar()
x, alpha, color, fill, linetype, size, weight

e + geom_label(aes(label = cty)) - x, y, label,
alpha, angle, color, family, fontface, hjust,
lineheight, size, vjust

e + geom_point()
x, y, alpha, color, fill, shape, size, stroke

e + geom_quantile()
x, y, alpha, color, group, linetype, size, weight

e + geom_rug(sides = “bl")
x, y, alpha, color, linetype, size

e + geom_smooth(method = lm)
x, y, alpha, color, fill, group, linetype, size, weight

e + geom_text(aes(label = cty)) - x, y, label,
alpha, angle, color, family, fontface, hjust,
lineheight, size, vjust

one discrete, one continuous
f <- ggplot(mpg, aes(class, hwy))

f + geom_col()
x, y, alpha, color, fill, group, linetype, size

f + geom_boxplot()
x, y, lower, middle, upper, ymax, ymin, alpha,
color, fill, group, linetype, shape, size, weight

f + geom_dotplot(binaxis = "y", stackdir = “center")
x, y, alpha, color, fill, group

f + geom_violin(scale = “area")
x, y, alpha, color, fill, group, linetype, size, weight

both discrete
g <- ggplot(diamonds, aes(cut, color))

g + geom_count()
x, y, alpha, color, fill, shape, size, stroke

e + geom_jitter(height = 2, width = 2)
x, y, alpha, color, fill, shape, size

THREE VARIABLES
seals$z <- with(seals, sqrt(delta_long^2 + delta_lat^2)); l <- ggplot(seals, aes(long, lat))

l + geom_raster(aes(fill = z), hjust = 0.5,
vjust = 0.5, interpolate = FALSE)
x, y, alpha, fill

l + geom_tile(aes(fill = z))
x, y, alpha, color, fill, linetype, size, width

h + geom_bin2d(binwidth = c(0.25, 500))
x, y, alpha, color, fill, linetype, size, weight

h + geom_density_2d()
x, y, alpha, color, group, linetype, size

h + geom_hex()
x, y, alpha, color, fill, size

continuous function
i <- ggplot(economics, aes(date, unemploy))

visualizing error
df <- data.frame(grp = c("A", "B"), fit = 4:5, se = 1:2)
j <- ggplot(df, aes(grp, fit, ymin = fit - se, ymax = fit + se))

ggplot(nc) +
 geom_sf(aes(fill = AREA))

Not
required,
sensible
defaults
supplied

Geoms Use a geom function to represent data points, use the geom’s aesthetic properties to represent variables.
Each function returns a layer.

TWO VARIABLES
both continuous
e <- ggplot(mpg, aes(cty, hwy))

continuous bivariate distribution
h <- ggplot(diamonds, aes(carat, price))

CC BY SA Posit Software, PBC • info@posit.co • posit.co • Learn more at ggplot2.tidyverse.org • HTML cheatsheets at pos.it/cheatsheets • ggplot2 3.5.2 • Updated: 2025-08

ggplot (data = <DATA>) +
 <GEOM_FUNCTION> (mapping = aes(<MAPPINGS>),
 stat = <STAT> , position = <POSITION>) +
 <COORDINATE_FUNCTION> +
 <FACET_FUNCTION> +
 <SCALE_FUNCTION> +
 <THEME_FUNCTION>

l + geom_contour(aes(z = z))
x, y, z, alpha, color, group, linetype, size, weight

l + geom_contour_filled(aes(fill = z))
x, y, alpha, color, fill, group, linetype, size, subgroup

i + geom_area()
x, y, alpha, color, fill, linetype, size

i + geom_line()
x, y, alpha, color, group, linetype, size

i + geom_step(direction = "hv")
x, y, alpha, color, group, linetype, size

j + geom_crossbar(fatten = 2) - x, y, ymax,
ymin, alpha, color, fill, group, linetype, size

j + geom_errorbar() - x, ymax, ymin,
alpha, color, group, linetype, size, width
Also geom_errorbarh().

j + geom_linerange()
x, ymin, ymax, alpha, color, group, linetype, size

j + geom_pointrange() - x, y, ymin, ymax,
alpha, color, fill, group, linetype, shape, size

Aes
color and fill - string ("red", "#RRGGBB")

linetype - integer or string (0 = "blank", 1 = "solid",
2 = "dashed", 3 = "dotted", 4 = "dotdash", 5 = "longdash",
6 = "twodash")

size - integer (in mm for size of points and text)

linewidth - integer (in mm for widths of lines)

shape - integer/shape name or
 a single character ("a")

Common aesthetic values.
nc <- sf::st_read(system.file("shape/nc.shp", package = "sf"))

mailto:info@posit.co
http://posit.co
http://ggplot2.tidyverse.org
https://pos.it/cheatsheets

Scales Coordinate Systems
A stat builds new variables to plot (e.g., count, prop).

Stats An alternative way to build a layer.

+ =
data geom

x = x ·
y = count

coordinate
system

plot

fl cty cyl
x count

stat

Visualize a stat by changing the default stat of a geom function,
geom_bar(stat="count") or by using a stat function,
stat_count(geom="bar"), which calls a default geom to make
a layer (equivalent to a geom function).
Use after_stat(name) syntax to map the stat variable name to
an aesthetic.

i + stat_density_2d(aes(fill = after_stat(level)),
geom = "polygon")

stat function geommappings

variable created by stat

geom to use

c + stat_bin(binwidth = 1, boundary = 10)
x, y | count, ncount, density, ndensity
c + stat_count(width = 1) x, y | count, prop
c + stat_density(adjust = 1, kernel = "gaussian")
x, y | count, density, scaled

e + stat_bin_2d(bins = 30, drop = T)
x, y, fill | count, density
e + stat_bin_hex(bins = 30) x, y, fill | count, density
e + stat_density_2d(contour = TRUE, n = 100)
x, y, color, size | level
e + stat_ellipse(level = 0.95, segments = 51, type = "t")

l + stat_contour(aes(z = z)) x, y, z, order | level
l + stat_summary_hex(aes(z = z), bins = 30, fun = max)
x, y, z, fill | value
l + stat_summary_2d(aes(z = z), bins = 30, fun = mean)
x, y, z, fill | value

f + stat_boxplot(coef = 1.5)
x, y | lower, middle, upper, width , ymin, ymax
f + stat_ydensity(kernel = "gaussian", scale = "area") x, y |
density, scaled, count, n, violinwidth, width

e + stat_ecdf(n = 40) x, y | x, y
e + stat_quantile(quantiles = c(0.1, 0.9),
formula = y ~ log(x), method = "rq") x, y | quantile
e + stat_smooth(method = "lm", formula = y ~ x, se = T,
level = 0.95) x, y | se, x, y, ymin, ymax

ggplot() + xlim(-5, 5) + stat_function(fun = dnorm,
n = 20, geom = “point”) x | x, y
ggplot() + stat_qq(aes(sample = 1:100))
x, y, sample | sample, theoretical
e + stat_sum() x, y, size | n, prop
e + stat_summary(fun.data = "mean_cl_boot")
h + stat_summary_bin(fun = "mean", geom = "bar")
e + stat_identity()
e + stat_unique()

Scales map data values to the visual values of an
aesthetic. To change a mapping, add a new scale.

n <- d + geom_bar(aes(fill = fl))

n + scale_fill_manual(
 values = c("skyblue", "royalblue", "blue", "navy"),
 limits = c("d", "e", "p", "r"), breaks =c("d", "e", "p", “r"),
 name = "fuel", labels = c("D", "E", "P", "R"))

scale_
aesthetic
to adjust

prepackaged
scale to use

scale-specific
arguments

title to use in
legend/axis

labels to use
in legend/axis

breaks to use in
legend/axisrange of values

to include in

GENERAL PURPOSE SCALES
Use with most aesthetics
scale_*_continuous() - Map cont’ values to visual ones.
scale_*_discrete() - Map discrete values to visual ones.
scale_*_binned() - Map continuous values to discrete bins.
scale_*_identity() - Use data values as visual ones.
scale_*_manual(values = c()) - Map discrete values to
manually chosen visual ones.
scale_*_date(date_labels = "%m/%d"),
date_breaks = "2 weeks") - Treat data values as dates.
scale_*_datetime() - Treat data values as date times.
Same as scale_*_date(). See ?strptime for label formats.

X & Y LOCATION SCALES
Use with x or y aesthetics (x shown here)
scale_x_log10() - Plot x on log10 scale.
scale_x_reverse() - Reverse the direction of the x axis.
scale_x_sqrt() - Plot x on square root scale.

COLOR AND FILL SCALES (DISCRETE)
n + scale_fill_brewer(palette = "Blues")
For palette choices:
RColorBrewer::display.brewer.all()
n + scale_fill_grey(start = 0.2,
end = 0.8, na.value = "red")

COLOR AND FILL SCALES (CONTINUOUS)
o <- c + geom_dotplot(aes(fill = x))

o + scale_fill_distiller(palette = “Blues”)

o + scale_fill_gradient(low="red", high=“yellow")

o + scale_fill_gradient2(low = "red", high = “blue”,
mid = "white", midpoint = 25)

o + scale_fill_gradientn(colors = topo.colors(6))
Also: rainbow(), heat.colors(), terrain.colors(),
cm.colors(), RColorBrewer::brewer.pal()

SHAPE AND SIZE SCALES
p <- e + geom_point(aes(shape = fl, size = cyl))

p + scale_shape() + scale_size()
p + scale_shape_manual(values = c(3:7))

p + scale_radius(range = c(1,6))
p + scale_size_area(max_size = 6)

r <- d + geom_bar()
r + coord_cartesian(xlim = c(0, 5)) - xlim, ylim
The default cartesian coordinate system.

r + coord_fixed(ratio = 1/2)
ratio, xlim, ylim - Cartesian coordinates with
fixed aspect ratio between x and y units.

r + coord_flip()
Flip cartesian coordinates by switching
x and y aesthetic mappings.

r + coord_polar(theta = "x", direction=1)
theta, start, direction - Polar coordinates.

r + coord_trans(y = “sqrt") - x, y, xlim, ylim
Transformed cartesian coordinates. Set xtrans
and ytrans to the name of a window function.

π + coord_sf() - xlim, ylim, crs. Ensures all layers
use a common Coordinate Reference System.

Position Adjustments
Position adjustments determine how to arrange geoms
that would otherwise occupy the same space.

s <- ggplot(mpg, aes(fl, fill = drv))

s + geom_bar(position = "dodge")
Arrange elements side by side.
s + geom_bar(position = "fill")
Stack elements on top of one
another, normalize height.

e + geom_point(position = "jitter")
Add random noise to X and Y position of
each element to avoid overplotting.

e + geom_label(position = "nudge")
Nudge labels away from points.

s + geom_bar(position = "stack")
Stack elements on top of one another.

Each position adjustment can be recast as a function
with manual width and height arguments:
s + geom_bar(position = position_dodge(width = 1))

A
B

Themes
r + theme_bw()
White background
with grid lines.

r + theme_gray()
Grey background
(default theme).

r + theme_dark()
Dark for contrast.

r + theme_classic()
r + theme_light()
r + theme_linedraw()
r + theme_minimal()
Minimal theme.

r + theme_void()
Empty theme.

Faceting
Facets divide a plot into
subplots based on the
values of one or more
discrete variables.

t <- ggplot(mpg, aes(cty, hwy)) + geom_point()

t + facet_grid(. ~ fl)
Facet into columns based on fl.

t + facet_grid(year ~ .)
Facet into rows based on year.

t + facet_grid(year ~ fl)
Facet into both rows and columns.

t + facet_wrap(~ fl)
Wrap facets into a rectangular layout.

Set scales to let axis limits vary across facets.

t + facet_grid(drv ~ fl, scales = "free")
 x and y axis limits adjust to individual facets:
 "free_x" - x axis limits adjust
 "free_y" - y axis limits adjust

Set labeller to adjust facet label:

t + facet_grid(. ~ fl, labeller = label_both)

t + facet_grid(fl ~ ., labeller = label_bquote(alpha ^ .(fl)))

fl: c fl: d fl: e fl: p fl: r

↵c ↵d ↵e ↵p ↵r

Labels and Legends
Use labs() to label the elements of your plot.
t + labs(x = "New x axis label", y = "New y axis label",
 title ="Add a title above the plot",
 subtitle = "Add a subtitle below title",
 caption = "Add a caption below plot",
 alt = "Add alt text to the plot",
 <aes> = "New <aes> legend title")

t + annotate(geom = "text", x = 8, y = 9, label = “A")
Places a geom with manually selected aesthetics.
p + guides(x = guide_axis(n.dodge = 2)) Avoid crowded
or overlapping labels with guide_axis(n.dodge or angle).
n + guides(fill = “none") Set legend type for each
aesthetic: colorbar, legend, or none (no legend).
n + theme(legend.position = "bottom")
Place legend at "bottom", "top", "left", or “right”.
n + scale_fill_discrete(name = "Title",
labels = c("A", "B", "C", "D", "E"))
Set legend title and labels with a scale function.

<AES> <AES>

Zooming
Without clipping (preferred):
t + coord_cartesian(xlim = c(0, 100), ylim = c(10, 20))
With clipping (removes unseen data points):
t + xlim(0, 100) + ylim(10, 20)
t + scale_x_continuous(limits = c(0, 100)) +
scale_y_continuous(limits = c(0, 100))

60

long

la
t

r + theme() Customize aspects of the theme such
as axis, legend, panel, and facet properties.
r + labs(title = “Title”) + theme(plot.title.position = “plot”)
r + theme(panel.background = element_rect(fill = “blue”))

Override defaults with scales package.

CC BY SA Posit Software, PBC • info@posit.co • posit.co • Learn more at ggplot2.tidyverse.org • HTML cheatsheets at pos.it/cheatsheets • ggplot2 3.5.2 • Updated: 2025-08

mailto:info@posit.co
http://posit.co
http://ggplot2.tidyverse.org
https://pos.it/cheatsheets

2018-01-31 11:59:59 UTC

x

x

2018-01-31 11:59:59

2018-01-31 11:59:59

2018-01-31 11:59:59

2018-01-31 11:59:59

2018-01-31 11:59:59

2018-01-31 11:59:59

2018-01-31 11:59:59

2017-11-28 12:00:00

Dates and times with lubridate : : CHEATSHEET
Date-times

2017-11-28 12:00:00
A date-time is a point on the timeline,
stored as the number of seconds since
1970-01-01 00:00:00 UTC

dt <- as_datetime(1511870400)
"2017-11-28 12:00:00 UTC"

1. Identify the order of the year (y), month (m), day (d), hour (h),
minute (m) and second (s) elements in your data.

2. Use the function below whose name replicates the order. Each
accepts a tz argument to set the time zone, e.g. ymd(x, tz = "UTC").

PARSE DATE-TIMES (Convert strings or numbers to date-times)

date_decimal(decimal, tz = "UTC")
date_decimal(2017.5)

now(tzone = "") Current time in tz
(defaults to system tz). now()

today(tzone = "") Current date in a
tz (defaults to system tz). today()

fast_strptime() Faster strptime.
fast_strptime(“9/1/01”, “%y/%m/%d”)

parse_date_time() Easier strptime.
parse_date_time(“09-01-01”, "ymd")

ymd_hms(), ymd_hm(), ymd_h().
ymd_hms("2017-11-28T14:02:00")

ydm_hms(), ydm_hm(), ydm_h().
ydm_hms("2017-22-12 10:00:00")

mdy_hms(), mdy_hm(), mdy_h().
mdy_hms("11/28/2017 1:02:03")

dmy_hms(), dmy_hm(), dmy_h().
dmy_hms("1 Jan 2017 23:59:59")

ymd(), ydm(). ymd(20170131)

mdy(), myd(). mdy("July 4th, 2000")

dmy(), dym(). dmy("4th of July '99")

yq() Q for quarter. yq("2001: Q3")

my(), ym(). my("07-2020")

hms::hms() Also lubridate::hms(),
hm() and ms(), which return
periods.* hms::hms(seconds = 0,
minutes = 1, hours = 2)

2017-11-28T14:02:00

2017-22-12 10:00:00

11/28/2017 1:02:03

1 Jan 2017 23:59:59

20170131

July 4th, 2000
4th of July '99

2001: Q3

2:01

2017.5

2016 2017 2018 2019 2020

x

2017-11-28
A date is a day stored as
the number of days since
1970-01-01

d <- as_date(17498)
"2017-11-28"

12:00:00
An hms is a time stored as
the number of seconds since
00:00:00

t <- hms::as_hms(85)
00:01:25

GET AND SET COMPONENTS

date(x) Date component. date(dt)

year(x) Year. year(dt)
isoyear(x) The ISO 8601 year.
epiyear(x) Epidemiological year.

month(x, label, abbr) Month.
month(dt)

day(x) Day of month. day(dt)
wday(x, label, abbr) Day of week.
qday(x) Day of quarter.

hour(x) Hour. hour(dt)

minute(x) Minutes. minute(dt)

second(x) Seconds. second(dt)

tz(x) Time zone. tz(dt)

week(x) Week of the year. week(dt)
isoweek() ISO 8601 week.
epiweek() Epidemiological week.

quarter(x) Quarter. quarter(dt)

semester(x, with_year = FALSE)
Semester. semester(dt)

am(x) Is it in the am? am(dt)
pm(x) Is it in the pm? pm(dt)

dst(x) Is it daylight savings? dst(d)

leap_year(x) Is it a leap year?
leap_year(d)

update(object, ..., simple = FALSE)
update(dt, mday = 2, hour = 1)

Use an accessor function to get a component.
Assign into an accessor function to change a
component in place.

d ## "2017-11-28"
day(d) ## 28
day(d) <- 1
d ## "2017-11-01"

January
xxxxxxxx

Time Zones
R recognizes ~600 time zones. Each encodes the time zone, Daylight
Savings Time, and historical calendar variations for an area. R assigns
one time zone per vector.

Use the UTC time zone to avoid Daylight Savings.

OlsonNames() Returns a list of valid time zone names. OlsonNames()

Sys.timezone() Gets current time zone.

with_tz(time, tzone = "") Get
the same date-time in a new
time zone (a new clock time).
Also local_time(dt, tz, units).
with_tz(dt, "US/Pacific")

force_tz(time, tzone = "") Get
the same clock time in a new
time zone (a new date-time).
Also force_tzs().
force_tz(dt, "US/Pacific")

PT
MT CT ET

7:00
Eastern

6:00
Central

5:00
Mountain4:00

Pacific

7:00
Eastern

7:00
Central

7:00
Mountain

7:00
Pacific

stamp() Derive a template from an example string and return a new
function that will apply the template to date-times. Also
stamp_date() and stamp_time().

1. Derive a template, create a function
sf <- stamp("Created Sunday, Jan 17, 1999 3:34")

2. Apply the template to dates
sf(ymd("2010-04-05"))
[1] "Created Monday, Apr 05, 2010 00:00"

Tip: use a
date with
day > 12

Stamp Date-times

Round Date-times
floor_date(x, unit = "second")
Round down to nearest unit.
floor_date(dt, unit = "month")

round_date(x, unit = "second")
Round to nearest unit.
round_date(dt, unit = "month")

ceiling_date(x, unit = "second",
change_on_boundary = NULL)
Round up to nearest unit.
ceiling_date(dt, unit = "month")

Jan Feb Mar Apr

Jan Feb Mar Apr

Jan Feb Mar Apr

Valid units are second, minute, hour, day, week, month, bimonth,
quarter, season, halfyear and year.

rollback(dates, roll_to_first = FALSE, preserve_hms = TRUE) Roll back to
last day of previous month. Also rollforward(). rollback(dt)

07-2020

CC BY SA Posit Software, PBC • info@posit.co • posit.co • Learn more at lubridate.tidyverse.org • HTML cheatsheets at pos.it/cheatsheets • lubridate 1.9.4 • Updated: 2025-08

mailto:info@posit.co
http://posit.co
http://lubridate.tidyverse.org/
https://pos.it/cheatsheets

Make an interval with interval() or %--%, e.g.

i <- interval(ymd("2017-01-01"), d) ## 2017-01-01 UTC--2017-11-28 UTC
j <- d %--% ymd("2017-12-31") ## 2017-11-28 UTC--2017-12-31 UTC

PERIODS DURATIONS
Add or subtract periods to model events that happen at specific clock
times, like the NYSE opening bell.

Make a period with the name of a time unit pluralized, e.g.

p <- months(3) + days(12)
p
"3m 12d 0H 0M 0S"

Make a duration with the name of a period prefixed with a d, e.g.

dd <- ddays(14)
dd
"1209600s (~2 weeks)"

Add or subtract durations to model physical processes, like battery life.
Durations are stored as seconds, the only time unit with a consistent length.
Difftimes are a class of durations found in base R.

Number
of days etc.Number

of months
Exact

length in
seconds

Equivalent
in common

units

INTERVALS
Divide an interval by a duration to determine its physical length, divide
an interval by a period to determine its implied length in clock time.

Math with Date-times — Lubridate provides three classes of timespans to facilitate math with dates and date-times.

a %within% b Does interval or date-time a fall
within interval b? now() %within% i

int_start(int) Access/set the start date-time of
an interval. Also int_end(). int_start(i) <- now();
int_start(i)

int_aligns(int1, int2) Do two intervals share a
boundary? Also int_overlaps(). int_aligns(i, j)

int_diff(times) Make the intervals that occur
between the date-times in a vector.
v <-c(dt, dt + 100, dt + 1000); int_diff(v)

int_flip(int) Reverse the direction of an
interval. Also int_standardize(). int_flip(i)

int_length(int) Length in seconds. int_length(i)

int_shift(int, by) Shifts an interval up or down
the timeline by a timespan. int_shift(i, days(-1))

as.interval(x, start, …) Coerce a timespan to
an interval with the start date-time. Also
is.interval(). as.interval(days(1), start = now())

 l

Start
Date

End
Date

Math with date-times relies on the timeline,
which behaves inconsistently. Consider how
the timeline behaves during:

A normal day
nor <- ymd_hms("2018-01-01 01:30:00",tz="US/Eastern")

The start of daylight savings (spring forward)
gap <- ymd_hms("2018-03-11 01:30:00",tz="US/Eastern")

The end of daylight savings (fall back)
lap <- ymd_hms("2018-11-04 00:30:00",tz="US/Eastern")

Leap years and leap seconds
leap <- ymd("2019-03-01")

12:00 1:00 2:00 3:00

2019 2020 2021

1:00 2:00 3:00 4:00

1:00 2:00 3:00 4:00

Durations track the passage of
physical time, which deviates from
clock time when irregularities occur.

nor + dminutes(90)

gap + dminutes(90)

lap + dminutes(90)

leap + dyears(1)

12:00 1:00 2:00 3:00

2019 2020 2021

1:00 2:00 3:00 4:00

1:00 2:00 3:00 4:00

Periods track changes in clock times,
which ignore time line irregularities.

nor + minutes(90)

gap + minutes(90)

lap + minutes(90)

leap + years(1)

12:00 1:00 2:00 3:00

1:00 2:00 3:00 4:00

1:00 2:00 3:00 4:00

2019 2020 2021

Intervals represent specific intervals
of the timeline, bounded by start and
end date-times.

interval(nor, nor + minutes(90))

interval(gap, gap + minutes(90))

interval(lap, lap + minutes(90))

interval(leap, leap + years(1))

12:00 1:00 2:00 3:00

1:00 2:00 3:00 4:00

1:00 2:00 3:00 4:00

2019 2020 2021

Not all years
are 365 days
due to leap days.
Not all minutes
are 60 seconds due to
leap seconds.
It is possible to create an imaginary date
by adding months, e.g. February 31st
jan31 <- ymd(20180131)
jan31 + months(1)
NA
%m+% and %m-% will roll imaginary
dates to the last day of the previous
month.
jan31 %m+% months(1)
"2018-02-28"
add_with_rollback(e1, e2, roll_to_first =
TRUE) will roll imaginary dates to the
first day of the new month.
add_with_rollback(jan31, months(1),
roll_to_first = TRUE)
"2018-03-01"

dyears(x = 1) 31536000x seconds.
dmonths(x = 1) 2629800x seconds.
dweeks(x = 1) 604800x seconds.
ddays(x = 1) 86400x seconds.
dhours(x = 1) 3600x seconds.
dminutes(x = 1) 60x seconds.
dseconds(x = 1) x seconds.
dmilliseconds(x = 1) x x 10-3 seconds.
dmicroseconds(x = 1) x x 10-6 seconds.
dnanoseconds(x = 1) x x 10-9 seconds.
dpicoseconds(x = 1) x x 10-12 seconds.

duration(num = NULL, units = "second", …)
An automation friendly duration
constructor. duration(5, unit = "years")

as.duration(x, …) Coerce a timespan to a
duration. Also is.duration(), is.difftime().
as.duration(i)

make_difftime(x) Make difftime with the
specified number of units.
make_difftime(99999)

years(x = 1) x years.
months(x) x months.
weeks(x = 1) x weeks.
days(x = 1) x days.
hours(x = 1) x hours.
minutes(x = 1) x minutes.
seconds(x = 1) x seconds.
milliseconds(x = 1) x milliseconds.
microseconds(x = 1) x microseconds
nanoseconds(x = 1) x nanoseconds.
picoseconds(x = 1) x picoseconds.

period(num = NULL, units = "second", ...)
An automation friendly period constructor.
period(5, unit = "years")

as.period(x, unit) Coerce a timespan to a
period, optionally in the specified units.
Also is.period(). as.period(p)

period_to_seconds(x) Convert a period to
the "standard" number of seconds implied
by the period. Also seconds_to_period().
period_to_seconds(p)

CC BY SA Posit Software, PBC • info@posit.co • posit.co • Learn more at lubridate.tidyverse.org • HTML cheatsheets at pos.it/cheatsheets • lubridate 1.9.4 • Updated: 2025-08

mailto:info@posit.co
http://posit.co
http://lubridate.tidyverse.org/
https://pos.it/cheatsheets

Apply functions with purrr : : CHEATSHEET
Map Functions

Function Shortcuts
Use \(x) with functions like map() that have
single arguments.

Use \(x, y) with functions like map2() that have
two arguments.

Use \(x, y, z) etc with functions like pmap() that
have many arguments.

map(l, \(x) x + 2)
becomes

map(l, function(x) x + 2)

map2(l, p, \(x, y) x + y)
becomes

map2(l, p, function(l, p) l + p)

pmap(list(x, y, z), \(x, y, z) x + y / z)
becomes

pmap(list(x, y, z), function(x, y, z) x * (y + z))

Use \(x, y) with functions like imap(). .x will get
the list value and .y will get the index, or name if
available.
imap(list("a", "b", "c"), \(x, y) paste0(y, ": ", x))

outputs "index: value" for each item

Use a string or an integer with any map function to index list elements by name or position. map(l, "name") becomes map(l, function(x) x[["name"]])

CC BY SA Posit Software, PBC • info@posit.co • posit.co • Learn more at purrr.tidyverse.org • HTML cheatsheets at pos.it/cheatsheets • purrr 1.1.0 • Updated: 2025-08

map(.x, .f, …) Apply a function to each element
of a list or vector, and return a list.
x <- list(a = 1:10, b = 11:20, c = 21:30)
l1 <- list(x = c("a", "b"), y = c("c", "d"))
map(l1, sort, decreasing = TRUE)

fun(,…)
fun(,…)
fun(,…)

map(, fun, …)

ONE LIST

map_dbl(.x, .f, …)
Return a double vector.
map_dbl(x, mean)

map_int(.x, .f, ...)
Return an integer vector.
map_int(x, length)

map_chr(.x, .f, …)
Return a character vector.
map_chr(l1, paste, collapse = "")

map_lgl(.x, .f, …)
Return a logical vector.
map_lgl(x, is.integer)

map_vec(.x, .f, ...)
Return a vector that is of the
simplest common type.
map_vec(l1, paste, collapse = “")

walk(.x, .f, ...) Trigger side
effects, return invisibly.
walk(x, print)

1.0

2.5

3.0

1

2

3

a

b

c

T

T

F

a

b

c

fun(, ,…)
fun(, ,…)
fun(, ,…)

map2(, ,fun,…)

map2(.x, .y, .f, …) Apply a function to pairs of
elements from two lists or vectors, return a list.
y <- list(1, 2, 3); z <- list(4, 5, 6); l2 <- list(x = "a", y = "z")
map2(x, y,\(x, y) x*y)

TWO LISTS

map2_dbl(.x, .y, .f, …) Return
a double vector.
map2_dbl(y, z, ~ .x / .y)

map2_int(.x, .y, .f, …) Return
an integer vector.
map2_int(y, z, `+`)

map2_chr(.x, .y, .f, …) Return
a character vector.
map2_chr(l1, l2, paste,
collapse = ",", sep = ":")

map2_lgl(.x, .y, .f, …) Return
a logical vector.
map2_lgl(l2, l1, `%in%`)

map2_vec(.x, .f, ...)
Return a vector that is of the
simplest common type.
map2_vec(l1, l2, paste,
collapse = ",", sep = ":")

walk2(.x, .y, .f, ...) Trigger
side effects, return invisibly.
walk2(objs, paths, save)

1.0

2.5

3.0

1

2

3

a

b

c

1.0

2.5

3.0

a

b

c

fun(, , ,…)
fun(, , ,…)
fun(, , ,…)

pmap(,fun,…)

pmap(.l, .f, …) Apply a function to groups of
elements from a list of lists or vectors, return a list.
pmap(
 list(x, y, z),
 function(first, second, third) first * (second + third)
)

MANY LISTS

pmap_dbl(.l, .f, …)
Return a double vector.
pmap_dbl(list(y, z), ~ .x / .y)

pmap_int(.l, .f, …)
Return an integer vector.
pmap_int(list(y, z), `+`)

pmap_chr(.l, .f, …)
Return a character vector.
pmap_chr(list(l1, l2), paste,
collapse = ",", sep = ":")

pmap_lgl(.l, .f, …)
Return a logical vector.
pmap_lgl(list(l2, l1), `%in%`)

pmap_vec(.l, .f, …)
Return a vector that is of the
simplest common type.
pmap_vec(list(l1, l2), paste,
collapse = ",", sep = ":")

pwalk(.l, .f, ...) Trigger side
effects, return invisibly.
pwalk(list(objs, paths), save)

1.0

2.5

3.0

1

2

3

a

b

c

T

F

T

a

b

c

imap(.x, .f, ...) is shorthand for map2(.x,
names(.x), .f) or map2(.x, seq_along(.x), .f)
depending on whether .x is named or not.

mailto:info@posit.co
http://posit.co
http://purrr.tidyverse.org/
https://pos.it/cheatsheets

a
b

a
b
c
d

keep(.x, .p, …)
Keep elements that pass a
logical test.
Conversely, discard().
keep(x, is.numeric)

head_while(.x, .p, …)
Return head elements until
one does not pass.
Also tail_while().
head_while(x, is.character)

detect(.x, .f, ..., dir =
c("forward", "backward"),
.right = NULL, .default = NULL)
Find first element to pass.
detect(x, is.character)

detect_index(.x, .f, ..., dir =
c("forward", "backward"),
.right = NULL) Find index of
first element to pass.
detect_index(x, is.character)

every(.x, .p, …)
Do all elements pass a test?
every(x, is.character)

some(.x, .p, …)
Do some elements pass a test?
some(x, is.character)

none(.x, .p, …)
Do no elements pass a test?
none(x, is.character)

has_element(.x, .y)
Does a list contain an element?
has_element(x, "foo")

a
b
c

b

a
b
c

c

Predicate functions

a
b
c

FALSE

a
b
c

TRUE

a
b
c

TRUE

a
b
c

3

a
b
c

TRUE

Pluck
pluck(.x, ..., .default=NULL)
Select an element by name or
index. Also attr_getter() and
chuck().
pluck(x, "b")
x |> pluck(“b")

assign_in(x, where, value)
Assign a value to a location
using pluck selection.
assign_in(x, "b", 5)
x |> assign_in("b", 5)

modify_in(.x, .where, .f) Apply
a function to a value at a
selected location.
modify_in(x, "b", abs)
x |> modify_in("b", abs)

a
b
c
d

b

a
b
c
d

a
b
c
d

a
b
c
d

a
fun()

c
d

List-Columns

WORK WITH LIST-COLUMNS

List-columns are columns of a
data frame where each element is
a list or vector instead of an atomic
value. Columns can also be lists of
data frames. See tidyr for more
about nested data and list
columns.

max seq
3 <int [3]>
4 <int [4]>
5 <int [5]>

Manipulate list-columns like any other kind of
column, using dplyr functions like mutate().
Because each element is a list, use map
functions within a column function to
manipulate each element.

Suffixed map functions like map_int() return an
atomic data type and will simplify list-columns
into regular columns.

map(), map2(), or pmap() return lists and will
create new list-columns.

starwars |>
 mutate(n_films = map_int(films, length))

list function,
return int

column function list-column

starwars |>
 transmute(ships = map2(vehicles,
 starships,
 append))column function

list function,
return list list-columns

CC BY SA Posit Software, PBC • info@posit.co • posit.co • Learn more at purrr.tidyverse.org • HTML cheatsheets at pos.it/cheatsheets • purrr 1.1.0 • Updated: 2025-08

Concatenate

list_c(x) Combines elements
into a vector by concatenating
them together.
list_c(x1)

x1 <- list(a = 1, b = 2, c = 3)
x2 <- list(
 a = data.frame(x = 1:2),
 b = data.frame(y = "a")
)

list_rbind(x) Combines
elements into a data frame by
row-binding them together.
list_rbind(x2)

list_cbind(x) Combines
elements into a data frame by
column-binding them
together.
list_cbind(x2)

Vectors
compact(.x, .p = identity)
Discard empty elements.
compact(x)

keep_at(x, at)
Keep/discard elements based
by name or position.
Conversely, discard_at().
keep_at(x, “a”)

set_names(x, nm = x)
Set the names of a vector/list
directly or with a function.
set_names(x, c("p", "q", "r"))
set_names(x, tolower)

NULLa
b

NULLc

b

a
b
c

a

p
q
r

a
b
c

a
b
c
d

a
b
c
d

a
b
c
d

a
b
c
d

a
b
c
d

a
b
c
d

modify(.x, .f, ...) Apply a
function to each element. Also
modify2(), and imodify().
modify(x, ~.+ 2)

modify_at(.x, .at, .f, ...) Apply a
function to selected elements.
Also map_at().
modify_at(x, "b", ~.+ 2)

modify_if(.x, .p, .f, ...) Apply a
function to elements that pass
a test. Also map_if().
modify_if(x, is.numeric,~.+2)

modify_depth(.x, .depth, .f, ...)
Apply function to each element
at a given level of a list. Also
map_depth().
modify_depth(x, 1, ~.+ 2)

Modify

a
b
c

x y
a
b
c

x y

reduce(.x, .f, ..., .init, .
dir = c("forward", "backward"))
Apply function recursively to each element of a
list or vector. Also reduce2().
reduce(x, sum)

accumulate(.x, .f, ..., .init) Reduce a list, but also
return intermediate results. Also accumulate2().
accumulate(x, sum)

func(,)
func(,)

c

func(,)
d

a b c dfunc +
a b

a

Reduce

func(,)
a b

func(,)
c

func(,)
d

a b c dfunc +

list_flatten(.x) Remove a level
of indexes from a list.
list_flatten(x)

a
b
c

x y
a
b
c

x ya
b
c

Reshape
list_transpose(.l, .names =
NULL)
Transposes the index order in
a multi-level list.
list_transpose(x)

mailto:info@posit.co
http://posit.co
http://purrr.tidyverse.org/
https://pos.it/cheatsheets

Publish and Share with Quarto : : CHEATSHEET

Render

CC BY SA Posit Software, PBC • info@posit.co • posit.co • Learn more at quarto.org • HTML cheatsheets at pos.it/cheatsheets • Quarto 1.7 • Updated: 2025-07

Author Publish
quarto publish {venue} hello.qmd
Terminal

Use Publish button

{venue}: quarto-pub, connect, gh-pages, netlify,
confluence

Free publishing service for
Quarto content.

Org-hosted, control access,
schedule updates.

Terminal

Quarto Projects
A directory of Quarto documents +
a configuration file (_quarto.yml)

See examples at https://quarto.org/docs/gallery/

Get started from the command line:

Use File > New Project

{type}: default, website, blog, book, confluence,
 manuscript

CREATE WEBSITES, BOOKS, AND MORE

GET QUARTO
https://quarto.org/docs/download/
Or use version bundled with Positron or RStudio

GET STARTED
https://quarto.org/docs/get-started/

WRITE AND CODE IN
PLAIN TEXT

GENERATE DOCUMENTS,
PRESENTATIONS AND MORE

Artwork from "Hello, Quarto" keynote by Julia Lowndes
and Mine Çetinkaya-Rundel, presented at RStudio

Conference 2022. Illustrated by Allison Horst.

SHARE YOUR WORK
WITH THE WORLD

Author Render Publish

RENDERED OUTPUT: hello.htmlSOURCE FILE: hello.qmd

title: "Hello, Penguins"
format: html
execute:
 echo: false

Meet the penguins

The `penguins` data contains size measurements for penguins
from three islands in the Palmer Archipelago, Antarctica.

The three species of penguins have quite distinct
distributions of physical dimensions (@fig-penguins).

```{r} 
#| label: fig-penguins 
#| fig-cap: "Dimensions of penguins across three species." 
#| warning: false 
library(tidyverse, quietly = TRUE) 
library(palmerpenguins) 
penguins |> 
  ggplot(aes(x = flipper_length_mm, y = bill_length_mm)) + 
  geom_point(aes(color = species)) + 
  scale_color_manual( 
    values = c("darkorange", "purple", "cyan4")) +

Set format(s) and options  
Use YAML Syntax

Include code 
R, Python, Julia, Observable, 

or any language with a 
Jupyter kernel

Use Visual Editor

## Write with **Markdown** 
RStudio: Help > Markdown Quick Reference 

The resulting HTML/PDF/MS Word/etc. 
document will be created and saved in the 
same directory as the source .qmd file.

quarto preview hello.qmd
Terminal

Save, then render to preview the 
document output. BEHIND THE SCENES 

When you render a document, Quarto: 
1. Runs the code and embeds results 

and text into an .md file with:  
Knitr, if any {r} cells or, 
Jupyter, if any other cells. 

2. Converts the .md file into the output 
format with Pandoc.

Use Render button

quarto create project {type}
Terminal

Author documents as .qmd files 
or Jupyter notebooks.  

Write in a rich Markdown syntax.

Produce HTML, PDF, MS Word 
reveal.js, MS Powerpoint, Beamer 

Websites, blogs, books...

Quickly deploy to 
GitHub Pages, Netlify, Quarto Pub, 

Posit Cloud, or Posit Connect

Output integrated into document 
Control how output appears with 

special comments in your code

Features for scientific 
publishing 

Cross references, citations, 
equations, and more

Use Preview button

USE A TOOL WITH A RICH EDITING 
EXPERIENCE

VS Code + 
Quarto  
extension

Edit Quarto documents with a Visual Editor

Run code cells as you write

Render with a button or keyboard shortcut 

Quarto documents (.qmd) can be 
edited in any tool that edits text.

OR ANY TEXT EDITOR

RStudio

Apply formatting in 
Visual Editor. Saved 
as Markdown in 
source.

Insert elements like 
code cells, cross 
references,  and 

more.

Positron

Use  Posit Publisher  
extension

Use Quarto: Create Project command

mailto:info@posit.co
http://posit.co
http://quarto.org
https://pos.it/cheatsheets
https://quarto.org/docs/download/


CC BY SA Posit Software, PBC  •   info@posit.co  •   posit.co  •  Learn more at quarto.org  • HTML cheatsheets at pos.it/cheatsheets  •  Quarto 1.7  •  Updated:  2025-07

FIGURES 

```{python} 
#| label: fig-LABEL
#| fig-cap: CAP
#| fig-alt: ALT
{{ plot code here }}
```

TABLES 

object	radius
Sun	696000
Earth	6371

: CAPTION {#tbl-LABEL}

COMPUTATION Output a Markdown table or an HTML table from your code

```{r} 
#| label: tbl-LABEL
#| tbl-cap: CAPTION
knitr::kable(head(cars))
```

Use knitr::kable() to produce 
Markdown:

Also see the R packages: gt, 
flextable, kableExtra.

```{python} 
#| label: tbl-LABEL
#| tbl-cap: CAPTION
import pandas as pd, tabulate
from IPython.display import Markdown
df = pd.DataFrame({"A": [1, 2],
 "B": [1, 2]})
Markdown(df.to_markdown(index=False))
```

Add Markdown()to Markdown output:

Prefix Renders Prefix Renders
fig- Figure 1 eq- Equation 1

tbl- Table 1 sec- Section 1

CROSS REFERENCES 
1. Add labels 

Code cell: add option label: prefix-LABEL  
Markdown: add attribute #prefix-LABEL 

2. Add references @prefix-LABEL, e.g. 

You can see in @fig-scatterplot, 
that...

CITATIONS 
1. Add a bibliography file to the YAML header:

--- 
bibliography: references.bib 
---

2. Add citations: [@citation], or @citation

Build your bibliography file from your Zotero library, 
DOI, Crossref, DataCite, or PubMed

Use Insert Citations dialog in the  
Visual Editor

OPTION DEFAULT EFFECTS

echo true false: hide code 
fenced: include code cell syntax

eval true false: don’t run code

include true false: don’t include code or results

output true false: don’t include results 
asis: treat results as raw markdown

warning true false: don’t include warnings in output

error false true: include error in output and 
continue with render

EXECUTION OPTIONS

--- 
execute: 
  echo: false 
---

```{r} 
#| echo: false
```

```{python} 
#| echo: false
```

Set execution options at the cell level:

Or, globally in the YAML header with the execute option:

Cell options control execution, figures, tables, layout 
and more.  See them all at:  
https://quarto.org/docs/reference/cells

INLINE CODE 
Use computed values directly in text sections. 
Code is evaluated at render and results appear as 
text.

```{r} 
#| label: chunk-id
library(tidyverse)
```

Code cells start with ```{language} and end with ```.

Add code cell options with #| comments.

Include Code

Use Insert Code Chunk/Cell

Other languages:  {julia}, {ojs}

```{python} 
#| label: chunk-id
import pandas as pd
```

CODE CELLS

--- 
title: "My Document" 
format:  
  html:  
    code-fold: true 
    toc: true 
---

--- 
title: "My Document" 
toc: true 
format:  
  html:  
    code-fold: true 
  pdf: default 
---

SET FORMAT OPTIONS MULTIPLE FORMATS

Indent format 2 
spaces

Indent options 4 
spaces

Render all formats: 

Top-level options  
apply to all formats

Visit https://quarto.org/docs/reference/ to see all options by format

Set Format and Options

Common formats: html, pdf, docx, odt, rtf, 
gfm, pptx, revealjs, beamer

OPTION DESCRIPTION
toc X X X Add a table of contents (true or false)
toc-depth X X X Lowest level of headings to add to table of contents (e.g. 2, 3)
anchor-sections X Show section anchors on mouse hover (true or false)
highlight-style X X X Syntax highlighting theme (e.g. arrow, pygments, kate, zenburn)
mainfont, monofont X X Font name. HTML: sets CSS font-family; LaTeX: via fontspec package
theme X Bootswatch theme name (e.g. cosmo, darkly, solar etc.)
css X CSS or SCSS file to use to style the document (e.g. "style.css")
reference-doc X docx/pptx file containing template styles (e.g. file.docx, file.pptx)

include-in-header X X Files of content to include in header of output document, also include-
before-body, include-after-body

keep-md X X X Keep intermediate markdown (true or false), also keep-ipynb, keep-tex
documentclass X LaTeX document class, set document class options with classoption
pdf-engine X LaTeX engine to produce PDF output (xelatex, pdflatex, lualatex)
cite-method X Method used to format citations (citeproc, natbib, biblatex)
code-fold X Let readers toggle the display of R code (false, true, or show)
code-tools X Add menu for hiding, showing, and downloading code (true or false)
code-overflow X Display of wide code (scroll, or wrap)
fig-align X X / Alignment of figures (default, left, right, or center)
fig-width, fig-height X X X Default width and height for figures in inches
fig-format X X X Format for Matplotlib or R figures (retina, png, jpeg, svg, or pdf)

ht
m

l/r
ev

ea
ljs

pd
f/

be
am

er
do

cx
/p

pt
x

N
av

St
yl

e
La

Te
X

Co
de

Fi
gu

re
s







Knitr

Al
so

 u
se

 in
 c

od
e 

ce
lls

KNITR JUPYTER OUTPUT 
Value is `r 2 + 2`. Value is `{python} 2 + 2`. Value is 4.

Add Content

CALLOUTS 

::: {.callout-tip} 
## Title 

Text 
:::

Instead of tip use one of:  
note, caution, warning, 
or important.

![CAP](image.png){#fig-LABEL fig-alt="ALT"}

Or {r}

MARKDOWN KNITR JUPYTER

Insert Table in  
Visual Editor

SHORTCODES
{{< include _file.qmd >}} 
{{< embed file.ipynb#id >}}  
{{< video video.mp4 >}}

Render a specific format: 

quarto render hello.qmd --to pdf
Terminal

quarto render hello.qmd
Terminal

MARKDOWN

COMPUTATION 

Set options in code 
cells with  #| 
comments and YAML 
syntax: 
key: value

mailto:info@posit.co
http://posit.co
http://quarto.org
https://pos.it/cheatsheets
https://cwickham.github.io/cheatsheets/html/quarto.html#figures
https://cwickham.github.io/cheatsheets/html/quarto.html#tables
https://cwickham.github.io/cheatsheets/html/quarto.html#layout
https://quarto.org/docs/reference/cells/
https://quarto.org/docs/reference/


 2

Python For Data Science Cheat Sheet
NumPy Basics

Learn Python for Data Science Interactively at  www.DataCamp.com

NumPy

DataCamp
Learn Python for Data Science Interactively

The NumPy library is the core library for scientific computing in 
Python. It provides a high-performance multidimensional array 
object, and tools for working with these arrays. 

>>> import numpy as np
Use the following import convention:

Creating Arrays

>>> np.zeros((3,4))                Create an array of zeros
>>> np.ones((2,3,4),dtype=np.int16) Create an array of ones
>>> d = np.arange(10,25,5)         Create an array of evenly   
                                   spaced values (step value)             
>>> np.linspace(0,2,9)             Create an array of evenly   
                                   spaced values (number of samples)
>>> e = np.full((2,2),7)           Create a constant array    
>>> f = np.eye(2)                  Create a 2X2 identity matrix
>>> np.random.random((2,2))        Create an array with random values
>>> np.empty((3,2))                Create an empty array

Array Mathematics

>>> g = a - b                          Subtraction
  array([[-0.5,  0. ,  0. ],
         [-3. , -3. , -3. ]])
>>> np.subtract(a,b)                   Subtraction
>>> b + a                              Addition
  array([[ 2.5,  4. ,  6. ],
         [ 5. ,  7. ,  9. ]])
>>> np.add(b,a)                        Addition
>>> a / b                              Division
  array([[ 0.66666667,  1.        ,  1.        ],
         [ 0.25      ,  0.4       ,  0.5       ]])
>>> np.divide(a,b)                     Division
>>> a * b                              Multiplication
  array([[  1.5,   4. ,   9. ],
         [  4. ,  10. ,  18. ]])

>>> np.multiply(a,b)                   Multiplication
>>> np.exp(b)                          Exponentiation
>>> np.sqrt(b)                         Square root
>>> np.sin(a)                          Print sines of an array
>>> np.cos(b)                          Element-wise cosine 
>>> np.log(a)                          Element-wise natural logarithm 
>>> e.dot(f)                           Dot product
  array([[ 7.,  7.],
         [ 7.,  7.]])

Subsetting, Slicing, Indexing

>>> a.sum()                     Array-wise sum
>>> a.min()                     Array-wise minimum value 
>>> b.max(axis=0)               Maximum value of an array row
>>> b.cumsum(axis=1)            Cumulative sum of the elements
>>> a.mean()                    Mean
>>> b.median()                  Median
>>> a.corrcoef()                Correlation coefficient
>>> np.std(b)                   Standard deviation

Comparison
>>> a == b                             Element-wise comparison
  array([[False,  True,  True],
         [False, False, False]], dtype=bool)
>>> a < 2                              Element-wise comparison
  array([True, False, False], dtype=bool)
>>> np.array_equal(a, b)               Array-wise comparison

1  2 3

1D array   2D array                                      3D array

1.5  2 3
4  5 6

Array Manipulation

NumPy Arrays

axis 0

axis 1

axis 0

axis 1
axis 2

Arithmetic Operations

  Transposing Array
>>> i = np.transpose(b)          Permute array dimensions
>>> i.T                          Permute array dimensions

  Changing Array Shape
>>> b.ravel()                    Flatten the array
>>> g.reshape(3,-2)              Reshape, but don’t change data

  Adding/Removing Elements
>>> h.resize((2,6))              Return a new array with shape (2,6) 
>>> np.append(h,g)               Append items to an array
>>> np.insert(a, 1, 5)           Insert items in an array
>>> np.delete(a,[1])             Delete items from an array

   Combining Arrays
>>> np.concatenate((a,d),axis=0) Concatenate arrays
  array([ 1,  2,  3, 10, 15, 20])
>>> np.vstack((a,b))             Stack arrays vertically (row-wise)
  array([[ 1. ,  2. ,  3. ],
         [ 1.5,  2. ,  3. ],
         [ 4. ,  5. ,  6. ]])
>>> np.r_[e,f]                   Stack arrays vertically (row-wise)
>>> np.hstack((e,f))             Stack arrays horizontally (column-wise)
  array([[ 7.,  7.,  1.,  0.], 
         [ 7.,  7.,  0.,  1.]])
>>> np.column_stack((a,d))       Create stacked column-wise arrays
  array([[ 1, 10],
         [ 2, 15],
         [ 3, 20]])
>>> np.c_[a,d]                   Create stacked column-wise arrays

   Splitting Arrays
>>> np.hsplit(a,3)               Split the array horizontally at the 3rd      
    [array([1]),array([2]),array([3])]    index
>>> np.vsplit(c,2)               Split the array vertically at the 2nd index
[array([[[ 1.5,  2. ,  1. ],
         [ 4. ,  5. ,  6. ]]]), 
  array([[[ 3.,  2.,  3.],
          [ 4.,  5.,  6.]]])]

Also see Lists

  Subsetting
>>> a[2]                       Select the element at the 2nd index
  3

>>> b[1,2]                     Select the element at row 1 column 2
  6.0                           (equivalent to b[1][2])

  Slicing
>>> a[0:2]                     Select items at index 0 and 1
  array([1, 2])

>>> b[0:2,1]                   Select items at rows 0 and 1 in column 1
  array([ 2.,  5.])  
     
>>> b[:1]                      Select all items at row 0
  array([[1.5, 2., 3.]])               (equivalent to b[0:1, :])
>>> c[1,...]                   Same as [1,:,:]
  array([[[ 3.,  2.,  1.],
          [ 4.,  5.,  6.]]])

>>> a[ : :-1]                  Reversed array a 
  array([3, 2, 1])

  Boolean Indexing
>>> a[a<2]                     Select elements from a less than 2
  array([1])

  Fancy Indexing
>>> b[[1, 0, 1, 0],[0, 1, 2, 0]]    Select elements (1,0),(0,1),(1,2) and (0,0)
  array([ 4. , 2. , 6. , 1.5]) 
>>> b[[1, 0, 1, 0]][:,[0,1,2,0]]      Select a subset of the matrix’s rows
  array([[ 4. ,5. , 6. , 4. ],           and columns
        [ 1.5, 2. , 3. , 1.5],
        [ 4. , 5. , 6. , 4. ],
        [ 1.5, 2. , 3. , 1.5]])

>>> a = np.array([1,2,3])
>>> b = np.array([(1.5,2,3), (4,5,6)], dtype = float)
>>> c = np.array([[(1.5,2,3), (4,5,6)], [(3,2,1), (4,5,6)]], 
                 dtype = float)

Initial Placeholders

Aggregate Functions

>>> np.loadtxt("myfile.txt")
>>> np.genfromtxt("my_file.csv", delimiter=',')
>>> np.savetxt("myarray.txt", a, delimiter=" ")

I/O

1 2 3

1.5 2 3

4  5 6

Copying Arrays
>>> h = a.view()          Create a view of the array with the same data
>>> np.copy(a)            Create a copy of the array
>>> h = a.copy()          Create a deep copy of the array

Saving & Loading Text Files

Saving & Loading On Disk
>>> np.save('my_array', a)
>>> np.savez('array.npz', a, b)
>>> np.load('my_array.npy')

>>> a.shape               Array dimensions
>>> len(a)                Length of array      
>>> b.ndim                Number of array dimensions  
>>> e.size                Number of array elements 
>>> b.dtype               Data type of array elements
>>> b.dtype.name          Name of data type  
>>> b.astype(int)         Convert an array to a different type 

Inspecting Your Array

>>> np.info(np.ndarray.dtype)
Asking For Help

Sorting Arrays
>>> a.sort()                 Sort an array
>>> c.sort(axis=0)           Sort the elements of an array's axis

Data Types
>>> np.int64          Signed 64-bit integer types 
>>> np.float32         Standard double-precision floating point
>>> np.complex        Complex numbers represented by 128 floats
>>> np.bool           Boolean type storing TRUE and FALSE values
>>> np.object         Python object type
>>> np.string_        Fixed-length string type
>>> np.unicode_       Fixed-length unicode type

1 2 3

1.5 2 3

4  5 6

1.5 2 3

4  5 6

1 2 3



F M A

Data Wrangling
with pandas
Cheat Sheet

http://pandas.pydata.org

Syntax – Creating DataFrames

Tidy Data – A foundation for wrangling in pandas

In a tidy 
data set:

F M A

Each variable is saved 
in its own column

&
Each observation is 
saved in its own row

Tidy data complements pandas’s vectorized
operations. pandas will automatically preserve 
observations as you manipulate variables. No 
other format works as intuitively with pandas.

Reshaping Data – Change the layout of a data set

M A F*

M A*

pd.melt(df)
Gather columns into rows.

df.pivot(columns='var', values='val')
Spread rows into columns.

pd.concat([df1,df2])
Append rows of DataFrames

pd.concat([df1,df2], axis=1)
Append columns of DataFrames

df.sort_values('mpg')
Order rows by values of a column (low to high).

df.sort_values('mpg',ascending=False)
Order rows by values of a column (high to low).

df.rename(columns = {'y':'year'})
Rename the columns of a DataFrame

df.sort_index()
Sort the index of a DataFrame

df.reset_index()
Reset index of DataFrame to row numbers, moving 
index to columns.

df.drop(columns=['Length','Height'])
Drop columns from DataFrame

Subset Observations (Rows) Subset Variables (Columns)

a b c

1 4 7 10

2 5 8 11

3 6 9 12

df = pd.DataFrame(
{"a" : [4 ,5, 6], 
"b" : [7, 8, 9], 
"c" : [10, 11, 12]}, 

index = [1, 2, 3])
Specify values for each column.

df = pd.DataFrame(
[[4, 7, 10],
[5, 8, 11],
[6, 9, 12]], 
index=[1, 2, 3], 
columns=['a', 'b', 'c'])

Specify values for each row.

a b c

n v

d
1 4 7 10

2 5 8 11

e 2 6 9 12

df = pd.DataFrame(
{"a" : [4 ,5, 6], 
"b" : [7, 8, 9], 
"c" : [10, 11, 12]}, 

index = pd.MultiIndex.from_tuples(
[('d',1),('d',2),('e',2)],

names=['n','v'])))
Create DataFrame with a MultiIndex

Method Chaining
Most pandas methods return a DataFrame so that 
another pandas method can be applied to the 
result.  This improves readability of code.
df = (pd.melt(df)

.rename(columns={
'variable' : 'var', 
'value' : 'val'})

.query('val >= 200')
)

df[df.Length > 7]
Extract rows that meet logical 
criteria.

df.drop_duplicates()
Remove duplicate rows (only 
considers columns).

df.head(n)
Select first n rows.

df.tail(n)
Select last n rows.

Logic in Python (and pandas)

< Less than != Not equal to

> Greater than df.column.isin(values) Group membership

== Equals pd.isnull(obj) Is NaN

<= Less than or equals pd.notnull(obj) Is not NaN

>= Greater than or equals &,|,~,^,df.any(),df.all() Logical and, or, not, xor, any, all

http://pandas.pydata.org/ This cheat sheet inspired by Rstudio Data Wrangling Cheatsheet (https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf)  Written by Irv Lustig, Princeton Consultants

df[['width','length','species']]
Select multiple columns with specific names.

df['width']  or df.width
Select single column with specific name.

df.filter(regex='regex')
Select columns whose name matches regular expression regex.

df.loc[:,'x2':'x4']
Select all columns between x2 and x4 (inclusive).

df.iloc[:,[1,2,5]]
Select columns in positions 1, 2 and 5 (first column is 0).

df.loc[df['a'] > 10, ['a','c']]
Select rows meeting logical condition, and only the specific columns .

regex (Regular Expressions) Examples

'\.' Matches strings containing a period '.'

'Length$' Matches strings ending with word 'Length'

'^Sepal' Matches strings beginning with the word 'Sepal'

'^x[1-5]$' Matches strings beginning with 'x' and ending with 1,2,3,4,5

''^(?!Species$).*' Matches strings except the string 'Species'

df.sample(frac=0.5)
Randomly select fraction of rows. 

df.sample(n=10)
Randomly select n rows.

df.iloc[10:20]
Select rows by position.

df.nlargest(n, 'value')
Select and order top n entries.

df.nsmallest(n, 'value')
Select and order bottom n entries.

http://pandas.pydata.org/
https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf
http://www.princetonoptimization.com/


Summarize Data

Make New Columns

Combine Data Sets
df['w'].value_counts()

Count number of rows with each unique value of variable
len(df)

# of rows in DataFrame.
df['w'].nunique()

# of distinct values in a column.
df.describe()

Basic descriptive statistics for each column (or GroupBy)

pandas provides a large set of summary functions that operate on 
different kinds of pandas objects (DataFrame columns, Series, 
GroupBy, Expanding and Rolling (see below)) and produce single 
values for each of the groups. When applied to a DataFrame, the 
result is returned as a pandas Series for each column. Examples:

sum()
Sum values of each object.

count()
Count non-NA/null values of 
each object.

median()
Median value of each object.

quantile([0.25,0.75])
Quantiles of each object.

apply(function)
Apply function to each object.

min()
Minimum value in each object.

max()
Maximum value in each object.

mean()
Mean value of each object.

var()
Variance of each object.

std()
Standard deviation of each 
object.

df.assign(Area=lambda df: df.Length*df.Height)
Compute and append one or more new columns.

df['Volume'] = df.Length*df.Height*df.Depth
Add single column.

pd.qcut(df.col, n, labels=False)
Bin column into n buckets.

Vector 
function

Vector 
function

pandas provides a large set of vector functions that operate on all 
columns of a DataFrame or a single selected column (a pandas 
Series). These functions produce vectors of values for each of the 
columns, or a single Series for the individual Series. Examples:

shift(1)
Copy with values shifted by 1.

rank(method='dense')
Ranks with no gaps.

rank(method='min')
Ranks. Ties get min rank.

rank(pct=True)
Ranks rescaled to interval [0, 1].

rank(method='first')
Ranks. Ties go to first value.

shift(-1)
Copy with values lagged by 1.

cumsum()
Cumulative sum.

cummax()
Cumulative max.

cummin()
Cumulative min.

cumprod()
Cumulative product.

x1 x2
A 1
B 2
C 3

x1 x3
A T
B F
D T

adf bdf

Standard Joins

x1 x2 x3
A 1 T
B 2 F
C 3 NaN

x1 x2 x3
A 1.0 T
B 2.0 F
D NaN T

x1 x2 x3
A 1 T
B 2 F

x1 x2 x3
A 1 T
B 2 F
C 3 NaN
D NaN T

pd.merge(adf, bdf,
how='left', on='x1')

Join matching rows from bdf to adf.

pd.merge(adf, bdf,
how='right', on='x1')

Join matching rows from adf to bdf.

pd.merge(adf, bdf,
how='inner', on='x1')

Join data. Retain only rows in both sets.

pd.merge(adf, bdf,
how='outer', on='x1')

Join data. Retain all values, all rows.

Filtering Joins

x1 x2
A 1
B 2

x1 x2
C 3

adf[adf.x1.isin(bdf.x1)]
All rows in adf that have a match in bdf.

adf[~adf.x1.isin(bdf.x1)]
All rows in adf that do not have a match in bdf.

x1 x2
A 1
B 2
C 3

x1 x2
B 2
C 3
D 4

ydf zdf

Set-like Operations

x1 x2
B 2
C 3

x1 x2
A 1
B 2
C 3
D 4

x1 x2
A 1

pd.merge(ydf, zdf)
Rows that appear in both ydf and zdf
(Intersection).

pd.merge(ydf, zdf, how='outer')
Rows that appear in either or both ydf and zdf
(Union).

pd.merge(ydf, zdf, how='outer', 
indicator=True)

.query('_merge == "left_only"')

.drop(columns=['_merge'])
Rows that appear in ydf but not zdf (Setdiff).

Group Data
df.groupby(by="col")

Return a GroupBy object, 
grouped by values in column 
named "col".

df.groupby(level="ind")
Return a GroupBy object, 
grouped by values in index 
level named "ind".

All of the summary functions listed above can be applied to a group. 
Additional GroupBy functions:

max(axis=1)
Element-wise max.

clip(lower=-10,upper=10)
Trim values at input thresholds

min(axis=1)
Element-wise min.

abs()
Absolute value.

The examples below can also be applied to groups. In this case, the 
function is applied on a per-group basis, and the returned vectors 
are of the length of the original DataFrame.

Windows
df.expanding()

Return an Expanding object allowing summary functions to be 
applied cumulatively.

df.rolling(n)
Return a Rolling object allowing summary functions to be 
applied to windows of length n.

size()
Size of each group.

agg(function)
Aggregate group using function.

Handling Missing Data
df.dropna()

Drop rows with any column having NA/null data.
df.fillna(value)

Replace all NA/null data with value.

Plotting
df.plot.hist()

Histogram for each column
df.plot.scatter(x='w',y='h')

Scatter chart using pairs of points

http://pandas.pydata.org/ This cheat sheet inspired by Rstudio Data Wrangling Cheatsheet (https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf) Written by Irv Lustig, Princeton Consultants

http://pandas.pydata.org/
https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf
http://www.princetonoptimization.com/


Python For Data Science Cheat Sheet
Matplotlib

Learn Python Interactively at  www.DataCamp.com

Matplotlib

DataCamp
Learn Python for Data Science Interactively

          Prepare The Data Also see Lists & NumPy 

Matplotlib is a Python 2D plotting library which produces 
publication-quality figures in a variety of hardcopy formats 
and interactive environments across 
platforms.

1
>>> import numpy as np
>>> x = np.linspace(0, 10, 100)
>>> y = np.cos(x) 
>>> z = np.sin(x)

          Show Plot
>>> plt.show()

          Save Plot
    Save figures
>>> plt.savefig('foo.png')
   Save transparent figures
>>> plt.savefig('foo.png', transparent=True)

6

5

>>> fig = plt.figure()
>>> fig2 = plt.figure(figsize=plt.figaspect(2.0))

          Create Plot2

Plot Anatomy & Workflow

All plotting is done with respect to an Axes. In most cases, a 
subplot will fit your needs. A subplot is an axes on a grid system.
>>> fig.add_axes()
>>> ax1 = fig.add_subplot(221) # row-col-num
>>> ax3 = fig.add_subplot(212) 
>>> fig3, axes = plt.subplots(nrows=2,ncols=2)
>>> fig4, axes2 = plt.subplots(ncols=3)

           Customize Plot
Colors, Color Bars & Color Maps

Markers

Linestyles

Mathtext

Text & Annotations

Limits, Legends & Layouts

 The basic steps to creating plots with matplotlib are: 
             1 Prepare data     2 Create plot     3 Plot     4 Customize plot     5 Save plot     6 Show plot

>>> import matplotlib.pyplot as plt
>>> x = [1,2,3,4]
>>> y = [10,20,25,30]
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> ax.plot(x, y, color='lightblue', linewidth=3)
>>> ax.scatter([2,4,6], 
               [5,15,25], 
               color='darkgreen', 
               marker='^')
>>> ax.set_xlim(1, 6.5)
>>> plt.savefig('foo.png')
>>> plt.show()

Step 3, 4

Step 2

Step 1

Step 3

Step 6

Plot Anatomy Workflow

4

    Limits & Autoscaling
>>> ax.margins(x=0.0,y=0.1)                      Add padding to a plot
>>> ax.axis('equal')                             Set the aspect ratio of the plot to 1
>>> ax.set(xlim=[0,10.5],ylim=[-1.5,1.5])                   Set limits for x-and y-axis
>>> ax.set_xlim(0,10.5)                          Set limits for x-axis
   Legends
>>> ax.set(title='An Example Axes',              Set a title and x-and y-axis labels 
           ylabel='Y-Axis',  
           xlabel='X-Axis')
>>> ax.legend(loc='best')                        No overlapping plot elements
    Ticks
>>> ax.xaxis.set(ticks=range(1,5),               Manually set x-ticks
                 ticklabels=[3,100,-12,"foo"])
>>> ax.tick_params(axis='y',                     Make y-ticks longer and go in and out
                   direction='inout', 
                   length=10)

   Subplot Spacing
>>> fig3.subplots_adjust(wspace=0.5,              Adjust the spacing between subplots
                        hspace=0.3,                   
                        left=0.125, 
                        right=0.9, 
                        top=0.9, 
                        bottom=0.1)
>>> fig.tight_layout()                            Fit subplot(s) in to the figure area
   Axis Spines
>>> ax1.spines['top'].set_visible(False)          Make the top axis line for a plot invisible
>>> ax1.spines['bottom'].set_position(('outward',10)) Move the bottom axis line outward

Figure

Axes

>>> data = 2 * np.random.random((10, 10))
>>> data2 = 3 * np.random.random((10, 10))
>>> Y, X = np.mgrid[-3:3:100j, -3:3:100j]
>>> U = -1 - X**2 + Y
>>> V = 1 + X - Y**2
>>> from matplotlib.cbook import get_sample_data
>>> img = np.load(get_sample_data('axes_grid/bivariate_normal.npy'))

>>> lines = ax.plot(x,y)             Draw points with lines or markers connecting them
>>> ax.scatter(x,y)                  Draw unconnected points, scaled or colored
>>> axes[0,0].bar([1,2,3],[3,4,5])   Plot vertical rectangles (constant width)       
>>> axes[1,0].barh([0.5,1,2.5],[0,1,2]) Plot horiontal rectangles (constant height)
>>> axes[1,1].axhline(0.45)          Draw a horizontal line across axes   
>>> axes[0,1].axvline(0.65)          Draw a vertical line across axes
>>> ax.fill(x,y,color='blue')         Draw filled polygons 
>>> ax.fill_between(x,y,color='yellow')  Fill between y-values and 0

          Plotting Routines3
1D Data

>>> fig, ax = plt.subplots()
>>> im = ax.imshow(img,                      Colormapped or RGB arrays
                                                          cmap='gist_earth',
	           interpolation='nearest',
	           vmin=-2,
	           vmax=2) 

2D Data or Images

Vector Fields
>>> axes[0,1].arrow(0,0,0.5,0.5)    Add an arrow to the axes
>>> axes[1,1].quiver(y,z)          Plot a 2D field of arrows
>>> axes[0,1].streamplot(X,Y,U,V)  Plot 2D vector fields

Data Distributions
>>> ax1.hist(y)           Plot a histogram
>>> ax3.boxplot(y)        Make a box and whisker plot
>>> ax3.violinplot(z)     Make a violin plot

>>> axes2[0].pcolor(data2)       Pseudocolor plot of 2D array
>>> axes2[0].pcolormesh(data)    Pseudocolor plot of 2D array
>>> CS = plt.contour(Y,X,U)      Plot contours
>>> axes2[2].contourf(data1)     Plot filled contours
>>> axes2[2]= ax.clabel(CS)      Label a contour plot

Figure

Axes/Subplot

Y-axis

X-axis

1D Data

2D Data or Images

>>> plt.plot(x, x, x, x**2, x, x**3)
>>> ax.plot(x, y, alpha = 0.4)
>>> ax.plot(x, y, c='k')
>>> fig.colorbar(im, orientation='horizontal')
>>> im = ax.imshow(img,                  
                                                          cmap='seismic')

>>> fig, ax = plt.subplots()
>>> ax.scatter(x,y,marker=".")
>>> ax.plot(x,y,marker="o")

>>> plt.title(r'$sigma_i=15$', fontsize=20)

>>> ax.text(1, 
	    -2.1, 
           'Example Graph', 
           style='italic')
>>> ax.annotate("Sine",
                xy=(8, 0), 
                xycoords='data',
                xytext=(10.5, 0), 
                textcoords='data',
                arrowprops=dict(arrowstyle="->",
                            connectionstyle="arc3"),)

>>> plt.plot(x,y,linewidth=4.0)
>>> plt.plot(x,y,ls='solid') 
>>> plt.plot(x,y,ls='--')
>>> plt.plot(x,y,'--',x**2,y**2,'-.')
>>> plt.setp(lines,color='r',linewidth=4.0)

>>> import matplotlib.pyplot as plt

Close & Clear 
>>> plt.cla()               Clear an axis
>>> plt.clf()               Clear the entire figure
>>> plt.close()             Close a window



Python For Data Science Cheat Sheet
Scikit-Learn

Learn Python for data science Interactively at  www.DataCamp.com

Scikit-learn

DataCamp
Learn Python for Data Science Interactively

  Loading The Data Also see NumPy & Pandas

Scikit-learn is an open source Python library that 
implements a range of machine learning, 
preprocessing, cross-validation and visualization 
algorithms using a unified interface.

>>> import numpy as np
>>> X = np.random.random((10,5))
>>> y = np.array(['M','M','F','F','M','F','M','M','F','F','F'])
>>> X[X < 0.7] = 0

Your data needs to be numeric and stored as NumPy arrays or SciPy sparse 
matrices. Other types that are convertible to numeric arrays, such as Pandas 
DataFrame, are also acceptable.

  Create Your Model

  Model Fitting

  Prediction

  Tune Your Model

  Evaluate Your Model’s Performance

Grid Search

Randomized Parameter Optimization

   Linear Regression
>>> from sklearn.linear_model import LinearRegression
>>> lr = LinearRegression(normalize=True)

   Support Vector Machines (SVM)
>>> from sklearn.svm import SVC
>>> svc = SVC(kernel='linear')
   Naive Bayes 
>>> from sklearn.naive_bayes import GaussianNB
>>> gnb = GaussianNB()

   KNN
>>> from sklearn import neighbors
>>> knn = neighbors.KNeighborsClassifier(n_neighbors=5)

   Supervised learning
>>> lr.fit(X, y)
>>> knn.fit(X_train, y_train)
>>> svc.fit(X_train, y_train)

   Unsupervised Learning
>>> k_means.fit(X_train)
>>> pca_model = pca.fit_transform(X_train)

   Accuracy Score
>>> knn.score(X_test, y_test)

>>> from sklearn.metrics import accuracy_score
>>> accuracy_score(y_test, y_pred)

  Classification Report
>>> from sklearn.metrics import classification_report
>>> print(classification_report(y_test, y_pred))

  Confusion Matrix
>>> from sklearn.metrics import confusion_matrix
>>> print(confusion_matrix(y_test, y_pred))

Cross-Validation
>>> from sklearn.cross_validation import cross_val_score
>>> print(cross_val_score(knn, X_train, y_train, cv=4))
>>> print(cross_val_score(lr, X, y, cv=2))

Classification Metrics

>>> from sklearn.grid_search import GridSearchCV
>>> params = {"n_neighbors": np.arange(1,3), 
              "metric": ["euclidean", "cityblock"]}
>>> grid = GridSearchCV(estimator=knn, 
                        param_grid=params)
>>> grid.fit(X_train, y_train)
>>> print(grid.best_score_)
>>> print(grid.best_estimator_.n_neighbors)

>>> from sklearn.grid_search import RandomizedSearchCV
>>> params = {"n_neighbors": range(1,5), 
              "weights": ["uniform", "distance"]}
>>> rsearch = RandomizedSearchCV(estimator=knn, 
                                 param_distributions=params, 	
			          cv=4,
			          n_iter=8, 
			          random_state=5)
>>> rsearch.fit(X_train, y_train)
>>> print(rsearch.best_score_)

A Basic Example
>>> from sklearn import neighbors, datasets, preprocessing
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.metrics import accuracy_score
>>> iris = datasets.load_iris()
>>> X, y = iris.data[:, :2], iris.target
>>> X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=33)
>>> scaler = preprocessing.StandardScaler().fit(X_train)
>>> X_train = scaler.transform(X_train)
>>> X_test = scaler.transform(X_test)
>>> knn = neighbors.KNeighborsClassifier(n_neighbors=5)
>>> knn.fit(X_train, y_train)
>>> y_pred = knn.predict(X_test)
>>> accuracy_score(y_test, y_pred)

Supervised Learning Estimators

Unsupervised Learning Estimators
   Principal Component Analysis (PCA)
>>> from sklearn.decomposition import PCA
>>> pca = PCA(n_components=0.95)

   K Means
>>> from sklearn.cluster import KMeans
>>> k_means = KMeans(n_clusters=3, random_state=0)

Fit the model to the data

Fit the model to the data
Fit to data, then transform it

  Preprocessing The Data
Standardization

Normalization
>>> from sklearn.preprocessing import Normalizer
>>> scaler = Normalizer().fit(X_train)
>>> normalized_X = scaler.transform(X_train)
>>> normalized_X_test = scaler.transform(X_test)

  Training And Test Data
>>> from sklearn.model_selection import train_test_split
>>> X_train, X_test, y_train, y_test = train_test_split(X, 
                                            y, 
                                             random_state=0)

>>> from sklearn.preprocessing import StandardScaler
>>> scaler = StandardScaler().fit(X_train)
>>> standardized_X = scaler.transform(X_train)
>>> standardized_X_test = scaler.transform(X_test)

Binarization
>>> from sklearn.preprocessing import Binarizer
>>> binarizer = Binarizer(threshold=0.0).fit(X)
>>> binary_X = binarizer.transform(X)

Encoding Categorical Features

   Supervised Estimators
>>> y_pred = svc.predict(np.random.random((2,5)))
>>> y_pred = lr.predict(X_test)
>>> y_pred = knn.predict_proba(X_test)

   Unsupervised Estimators
>>> y_pred = k_means.predict(X_test)

>>> from sklearn.preprocessing import LabelEncoder
>>> enc = LabelEncoder()
>>> y = enc.fit_transform(y)

Imputing Missing Values

Predict labels
Predict labels
Estimate probability of a label

Predict labels in clustering algos

>>> from sklearn.preprocessing import Imputer
>>> imp = Imputer(missing_values=0, strategy='mean', axis=0)
>>> imp.fit_transform(X_train)

Generating Polynomial Features
>>> from sklearn.preprocessing import PolynomialFeatures
>>> poly = PolynomialFeatures(5)
>>> poly.fit_transform(X)       

Regression Metrics
   Mean Absolute Error
>>> from sklearn.metrics import mean_absolute_error
>>> y_true = [3, -0.5, 2]
>>> mean_absolute_error(y_true, y_pred)

   Mean Squared Error
>>> from sklearn.metrics import mean_squared_error
>>> mean_squared_error(y_test, y_pred)

   R² Score
>>> from sklearn.metrics import r2_score
>>> r2_score(y_true, y_pred)

Clustering Metrics
   Adjusted Rand Index
>>> from sklearn.metrics import adjusted_rand_score
>>> adjusted_rand_score(y_true, y_pred)  

  Homogeneity
>>> from sklearn.metrics import homogeneity_score
>>> homogeneity_score(y_true, y_pred) 

  V-measure
>>> from sklearn.metrics import v_measure_score
>>> metrics.v_measure_score(y_true, y_pred)    

Estimator score method

Metric scoring functions 

Precision, recall, f1-score
and support


